Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Role of Zinc and Copper in Insulin Resistance and Diabetes Mellitus

Author(s): Geir Bjørklund*, Maryam Dadar, Lyudmila Pivina, Monica Daniela Doşa*, Yuliya Semenova and Jan Aaseth

Volume 27, Issue 39, 2020

Page: [6643 - 6657] Pages: 15

DOI: 10.2174/0929867326666190902122155

Price: $65

Abstract

The prevalence of Type 2 Diabetes Mellitus (T2DM) is internationally ever-growing. Therefore, prevention, diagnostics, and control of insulin resistance and T2DM are of increasing importance. It has been suggested that mechanisms leading to insulin resistance and diabetes and its complications include high intake of refined and energy-rich food, which is presumed to be accompanied by suboptimal intake of trace elements, such as Zinc (Zn), Selenium (Se), Chromium (Cr), and Copper (Cu), which are essential and crucial for various biological processes. The purpose of this review is to highlight the role of Zn, Se, and Cu in T2DM. Diabetes seems prevalent when Zn, Se, and Cu are deficient, which may result from excessive intake of refined food. The literature search was conducted in PubMed and Scopus, supplemented with the reference lists of relevant articles and a Google Scholar search. We critically assessed all relevant citations, both review and research papers in English. The search terms that were used included Zn, Cu, diabetes, and diabetes mellitus. Research has shown that Zn, Se and Cu are involved in the pathogenesis of diabetes, but these trace elements can in excessive amounts be toxic. Zinc appears to activate key molecules that are involved in cell signaling, which maintain the homeostasis of glucose. Zinc also regulates insulin receptors, prolong the action of insulin, and promote healthy lipid profiles. Copper in excess can create oxidative stress, which is a factor in the onset and the progression of T2DM. Abnormal Zn and Cu metabolism appears to accompany and may also cause diabetes complications.

Keywords: Zinc, copper, diabetes mellitus, trace elements, metals, Type 2 Diabetes Mellitus.

[1]
Zimmet, P.; Alberti, K.G.; Magliano, D.J.; Bennett, P.H. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nat. Rev. Endocrinol., 2016, 12(10), 616-622.
[http://dx.doi.org/10.1038/nrendo.2016.105] [PMID: 27388988]
[2]
Kohan, D.E.; Fioretto, P.; Tang, W.; List, J.F. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int., 2014, 85(4), 962-971.
[http://dx.doi.org/10.1038/ki.2013.356] [PMID: 24067431]
[3]
Low Wang, C.C.; Hess, C.N.; Hiatt, W.R.; Goldfine, A.B. Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus–mechanisms, management, and clinical considerations. Circulation, 2016, 133(24), 2459-2502.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.022194] [PMID: 27297342]
[4]
Semenkovich, K.; Brown, M.E.; Svrakic, D.M.; Lustman, P.J. Depression in type 2 diabetes mellitus: prevalence, impact, and treatment. Drugs, 2015, 75(6), 577-587.
[http://dx.doi.org/10.1007/s40265-015-0347-4] [PMID: 25851098]
[5]
Jaacks, L.M.; Siegel, K.R.; Gujral, U.P.; Narayan, K.M. Type 2 diabetes: a 21st century epidemic. Best Pract. Res. Clin. Endocrinol. Metab., 2016, 30(3), 331-343.
[http://dx.doi.org/10.1016/j.beem.2016.05.003] [PMID: 27432069]
[6]
Swinburn, B.; Gill, T.; Kumanyika, S. Obesity prevention: a proposed framework for translating evidence into action. Obes. Rev., 2005, 6(1), 23-33.
[http://dx.doi.org/10.1111/j.1467-789X.2005.00184.x] [PMID: 15655036]
[7]
Deitel, M. The international obesity task force and “globesity”. Obes. Surg., 2002, 12(5), 613-614.
[http://dx.doi.org/10.1381/096089202321019558] [PMID: 12448379]
[8]
Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract., 2010, 87(1), 4-14.
[http://dx.doi.org/10.1016/j.diabres.2009.10.007] [PMID: 19896746]
[9]
Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest., 2004, 114(12), 1752-1761.
[http://dx.doi.org/10.1172/JCI21625] [PMID: 15599400]
[10]
Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med., 1998, 15(7), 539-553.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199807)15:7 <539:AID-DIA668>3.0.CO;2-S] [PMID: 9686693]
[11]
Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 2005, 54(6), 1615-1625.
[http://dx.doi.org/10.2337/diabetes.54.6.1615] [PMID: 15919781]
[12]
Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm. J., 2016, 24(5), 547-553.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
[13]
Green, J.B.; Bethel, M.A.; Armstrong, P.W.; Buse, J.B.; Engel, S.S.; Garg, J.; Josse, R.; Kaufman, K.D.; Koglin, J.; Korn, S.; Lachin, J.M.; McGuire, D.K.; Pencina, M.J.; Standl, E.; Stein, P.P.; Suryawanshi, S.; Van de Werf, F.; Peterson, E.D.; Holman, R.R. TECOS study group. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med., 2015, 373(3), 232-242.
[http://dx.doi.org/10.1056/NEJMoa1501352] [PMID: 26052984]
[14]
Adi, S.; Gonzalez, A.G. Type 1 diabetes mellitus: an overview In: Nutritional and therapeutic interventions for diabetes and metabolic syndrome, 2nd Ed.; Bagchi, D; Nair, S., Eds.; Academic Press: London; , 2018; pp. 3-13.
[http://dx.doi.org/10.1016/B978-0-12-385083-6.00001-2]
[15]
Toustrup, L.B.; Kvistgaard, H.; Palmfeldt, J.; Bjerre, C.K.; Gregersen, N.; Rittig, S.; Corydon, T.J.; Christensen, J.H. The novel Ser18del AVP variant causes inherited neurohypophyseal diabetes insipidus by mechanisms shared with other signal peptide variants. Neuroendocrinology, 2018, 106(2), 167-186.
[http://dx.doi.org/10.1159/000477246] [PMID: 28494452]
[16]
Baynes, J.W. Role of oxidative stress in development of complications in diabetes. Diabetes, 1991, 40(4), 405-412.
[http://dx.doi.org/10.2337/diab.40.4.405] [PMID: 2010041]
[17]
Zheng, Y.; Li, X-K.; Wang, Y.; Cai, L. The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: therapeutic effects by chelators. Hemoglobin, 2008, 32(1-2), 135-145.
[http://dx.doi.org/10.1080/03630260701727077] [PMID: 18274991]
[18]
Eshak, E.S.; Iso, H.; Maruyama, K.; Muraki, I.; Tamakoshi, A. Associations between dietary intakes of iron, copper and zinc with risk of type 2 diabetes mellitus: A large population-based prospective cohort study. Clin. Nutr., 2018, 37(2), 667-674.
[http://dx.doi.org/10.1016/j.clnu.2017.02.010] [PMID: 28285974]
[19]
Eshak, E.S.; Iso, H.; Mizoue, T.; Inoue, M.; Noda, M.; Tsugane, S. Soft drink, 100% fruit juice and vegetable juice intakes and risk of diabetes mellitus. Clin. Nutr., 2013, 32(2), 300-308.
[http://dx.doi.org/10.1016/j.clnu.2012.08.003] [PMID: 22917499]
[20]
Doşa, M.D.; Hangan, L-T.; Crauciuc, E.; Galeş, C.; Nechifor, M. Influence of therapy with metformin on the concentration of certain divalent cations in patients with non-insulin-dependent diabetes mellitus. Biol. Trace Elem. Res., 2011, 142(1), 36-46.
[http://dx.doi.org/10.1007/s12011-010-8751-9] [PMID: 20567934]
[21]
Mikalsen, S.M.; Bjørke-Monsen, A-L.; Whist, J.E.; Aaseth, J. Improved magnesium levels in morbidly obese diabetic and non-diabetic patients after modest weight loss. Biol. Trace Elem. Res., 2019, 188(1), 45-51.
[http://dx.doi.org/10.1007/s12011-018-1349-3] [PMID: 29705834]
[22]
American diabetes association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[23]
Kumar, S.; Singh, R.; Vasudeva, N.; Sharma, S. Acute and chronic animal models for the evaluation of anti-diabetic agents. Cardiovasc. Diabetol., 2012, 11, 9.
[http://dx.doi.org/10.1186/1475-2840-11-9] [PMID: 22257465]
[24]
Collaboration, N.R. NCD risk factor collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet, 2016, 387(10027), 1513-1530.
[http://dx.doi.org/10.1016/S0140-6736(16)00618-8] [PMID: 27061677]
[25]
Zobel, E.H.; Hansen, T.W.; Rossing, P.; von Scholten, B.J. Global changes in food supply and the obesity epidemic. Curr. Obes. Rep., 2016, 5(4), 449-455.
[http://dx.doi.org/10.1007/s13679-016-0233-8] [PMID: 27696237]
[26]
Unger, R.H. Lipotoxic diseases. Annu. Rev. Med., 2002, 53(1), 319-336.
[http://dx.doi.org/10.1146/annurev.med.53.082901.104057] [PMID: 11818477]
[27]
McIntyre, H.D.; Jensen, D.M.; Jensen, R.C.; Kyhl, H.B.; Jensen, T.K.; Glintborg, D.; Andersen, M. Gestational diabetes mellitus: does one size fit all? A challenge to uniform worldwide diagnostic thresholds. Diabetes Care, 2018, 41(7), 1339-1342.
[http://dx.doi.org/10.2337/dc17-2393] [PMID: 29559508]
[28]
Lambert, A.P.; Ellard, S.; Allen, L.I.; Gallen, I.W.; Gillespie, K.M.; Bingley, P.J.; Hattersley, A.T. Identifying hepatic nuclear factor 1α mutations in children and young adults with a clinical diagnosis of type 1 diabetes. Diabetes Care, 2003, 26(2), 333-337.
[http://dx.doi.org/10.2337/diacare.26.2.333] [PMID: 12547858]
[29]
Hattersley, A.; Bruining, J.; Shield, J.; Njolstad, P.; Donaghue, K.C. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr. Diabetes, 2009, 10(Suppl. 12), 33-42.
[http://dx.doi.org/10.1111/j.1399-5448.2009.00571.x] [PMID: 19754616]
[30]
Scott, D.; Fisher, A. The prolongation of insulin action by protamine and zinc. Proc. Am. Soc. Biol. Chem, 1936, 8, 88.
[31]
Sladek, R.; Rocheleau, G.; Rung, J.; Dina, C.; Shen, L.; Serre, D.; Boutin, P.; Vincent, D.; Belisle, A.; Hadjadj, S.; Balkau, B.; Heude, B.; Charpentier, G.; Hudson, T.J.; Montpetit, A.; Pshezhetsky, A.V.; Prentki, M.; Posner, B.I.; Balding, D.J.; Meyre, D.; Polychronakos, C.; Froguel, P. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature, 2007, 445(7130), 881-885.
[http://dx.doi.org/10.1038/nature05616] [PMID: 17293876]
[32]
Rutter, G.A.; Chimienti, F. SLC30A8 mutations in type 2 diabetes. Diabetologia, 2015, 58(1), 31-36.
[http://dx.doi.org/10.1007/s00125-014-3405-7] [PMID: 25287711]
[33]
Nsonwi, T.A.; Usoro, C.; Etukudo, M.; Usoro, I. Glycémie control and serum and urine levels of zinc and magnesium in diabetics in Calabar, Nigeria. Pak. J. Nutr., 2006, 5(1), 75-78.
[http://dx.doi.org/10.3923/pjn.2006.75.78]
[34]
Kazi, T.G.; Afridi, H.I.; Kazi, N.; Jamali, M.K.; Arain, M.B.; Jalbani, N.; Kandhro, G.A. Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol. Trace Elem. Res., 2008, 122(1), 1-18.
[http://dx.doi.org/10.1007/s12011-007-8062-y] [PMID: 18193174]
[35]
Niewoehner, C.B.; Allen, J.I.; Boosalis, M.; Levine, A.S.; Morley, J.E. Role of zinc supplementation in type II diabetes mellitus. Am. J. Med., 1986, 81(1), 63-68.
[http://dx.doi.org/10.1016/0002-9343(86)90183-X] [PMID: 3728555]
[36]
Chabosseau, P.; Rutter, G.A. Zinc and diabetes. Arch. Biochem. Biophys., 2016, 611, 79-85.
[http://dx.doi.org/10.1016/j.abb.2016.05.022] [PMID: 27262257]
[37]
Foster, M.C.; Leapman, R.D.; Li, M.X.; Atwater, I. Elemental composition of secretory granules in pancreatic islets of Langerhans. Biophys. J., 1993, 64(2), 525-532.
[http://dx.doi.org/10.1016/S0006-3495(93)81397-3] [PMID: 8457676]
[38]
Parham, M.; Amini, M.; Aminorroaya, A.; Heidarian, E. Effect of zinc supplementation on microalbuminuria in patients with type 2 diabetes: a double blind, randomized, placebo-controlled, cross-over trial. Rev. Diabet. Stud., 2008, 5(2), 102-109.
[http://dx.doi.org/10.1900/RDS.2008.5.102] [PMID: 18795212]
[39]
Nakayama, A.; Hiromura, M.; Adachi, Y.; Sakurai, H. Molecular mechanism of antidiabetic zinc-allixin complexes: regulations of glucose utilization and lipid metabolism. J. Biol. Inorg. Chem., 2008, 13(5), 675-684.
[http://dx.doi.org/10.1007/s00775-008-0352-0] [PMID: 18288506]
[40]
Adachi, Y.; Yoshikawa, Y.; Sakurai, H. Antidiabetic zinc(II)-N-acetyl-L-cysteine complex: evaluations of in vitro insulinomimetic and in vivo blood glucose-lowering activities. Biofactors, 2007, 29(4), 213-223.
[http://dx.doi.org/10.1002/biof.5520290405] [PMID: 18057552]
[41]
Al-Saif, F.A.; Refat, M.S. Synthesis, spectroscopic, and thermal investigation of transition and non-transition complexes of metformin as potential insulin-mimetic agents. J. Therm. Anal. Calorim., 2013, 111(3), 2079-2096.
[http://dx.doi.org/10.1007/s10973-012-2459-3]
[42]
Dosa, M.D.; Adumitresi, C.R.; Hangan, L.T.; Nechifor, M. Copper, zinc and magnesium in non-insulin-dependent diabetes mellitus treated with metformin in: Diabetes mellitus-insights and perspectives; Oguntibeju, O.O., Ed.; InTech: Rijeka, 2013, pp. 209-228.
[http://dx.doi.org/10.5772/48230 ]
[43]
Konukoglu, D.; Turhan, M.S.; Ercan, M.; Serin, O. Relationship between plasma leptin and zinc levels and the effect of insulin and oxidative stress on leptin levels in obese diabetic patients. J. Nutr. Biochem., 2004, 15(12), 757-760.
[http://dx.doi.org/10.1016/j.jnutbio.2004.07.007] [PMID: 15607649]
[44]
Canatan, H.; Bakan, I.; Akbulut, M.; Halifeoglu, I.; Cikim, G.; Baydas, G.; Kilic, N. Relationship among levels of leptin and zinc, copper, and zinc/copper ratio in plasma of patients with essential hypertension and healthy normotensive subjects. Biol. Trace Elem. Res., 2004, 100(2), 117-123.
[http://dx.doi.org/10.1385/BTER:100:2:117] [PMID: 15326361]
[45]
Chausmer, A.B. Zinc, insulin and diabetes. J. Am. Coll. Nutr., 1998, 17(2), 109-115.
[http://dx.doi.org/10.1080/07315724.1998.10718735] [PMID: 9550453]
[46]
Chimienti, F.; Devergnas, S.; Favier, A.; Seve, M. Identification and cloning of a β-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes, 2004, 53(9), 2330-2337.
[http://dx.doi.org/10.2337/diabetes.53.9.2330] [PMID: 15331542]
[47]
Tallman, D.L.; Taylor, C.G. Potential interactions of zinc in the neuroendocrine-endocrine disturbances of diabetes mellitus type 2. Can. J. Physiol. Pharmacol., 1999, 77(12), 919-933.
[http://dx.doi.org/10.1139/y99-111] [PMID: 10606438]
[48]
Gazaryan, I.G.; Krasnikov, B.F.; Ashby, G.A.; Thorneley, R.N.; Kristal, B.S.; Brown, A.M. Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase. J. Biol. Chem., 2002, 277(12), 10064-10072.
[http://dx.doi.org/10.1074/jbc.M108264200] [PMID: 11744691]
[49]
Maret, W. Zinc and diabetes. Biometals, 2005, 18(4), 293-294.
[http://dx.doi.org/10.1007/s10534-005-3684-z] [PMID: 16158221]
[50]
Jansen, J.; Karges, W.; Rink, L. Zinc and diabetes--clinical links and molecular mechanisms. J. Nutr. Biochem., 2009, 20(6), 399-417.
[http://dx.doi.org/10.1016/j.jnutbio.2009.01.009] [PMID: 19442898]
[51]
Sun, Q.; van Dam, R.M.; Willett, W.C.; Hu, F.B. Prospective study of zinc intake and risk of type 2 diabetes in women. Diabetes Care, 2009, 32(4), 629-634.
[http://dx.doi.org/10.2337/dc08-1913] [PMID: 19171718]
[52]
Shan, Z.; Bao, W.; Zhang, Y.; Rong, Y.; Wang, X.; Jin, Y.; Song, Y.; Yao, P.; Sun, C.; Hu, F.B.; Liu, L. Interactions between zinc transporter-8 gene (SLC30A8) and plasma zinc concentrations for impaired glucose regulation and type 2 diabetes. Diabetes, 2014, 63(5), 1796-1803.
[http://dx.doi.org/10.2337/db13-0606] [PMID: 24306209]
[53]
Samadi, A.; Yilmaz Isikhan, S.; Tinkov, A.A.; Lay, I.; Doşa, M.D.; Skalny, A.V.; Skalnaya, M.G.; Chirumbolo, S.; Bjørklund, G. Zinc, copper and oxysterol levels in patients with type 1 and type 2 diabetes mellitus. Clin. Nutr., 2019.
[http://dx.doi.org/10.1016/j.clnu.2019.07.026] [PMID: 31427180]
[54]
Bosma, K.J.; Syring, K.E.; Oeser, J.K.; Lee, J.D.; Benninger, R.K.P.; Pamenter, M.E.; O’Brien, R.M. Evidence that evolution of the diabetes susceptibility gene SLC30A8 that encodes the zinc transporter ZnT8 drives variations in pancreatic islet zinc content in multiple species. J. Mol. Evol., 2019, 87(4-6), 147-151.
[http://dx.doi.org/10.1007/s00239-019-09898-0] [PMID: 31273433]
[55]
Huang, Q.; Du, J.; Merriman, C.; Gong, Z. Genetic, functional, and immunological study of ZnT8 in diabetes. Int. J. Endocrinol., 2019, 2019, 1524905.
[http://dx.doi.org/10.1155/2019/1524905] [PMID: 30936916]
[56]
Soinio, M.; Marniemi, J.; Laakso, M.; Pyörälä, K.; Lehto, S.; Rönnemaa, T. Serum zinc level and coronary heart disease events in patients with type 2 diabetes. Diabetes Care, 2007, 30(3), 523-528.
[http://dx.doi.org/10.2337/dc06-1682] [PMID: 17327315]
[57]
Singh, R.B.; Niaz, M.A.; Rastogi, S.S.; Bajaj, S.; Gaoli, Z.; Shoumin, Z. Current zinc intake and risk of diabetes and coronary artery disease and factors associated with insulin resistance in rural and urban populations of North India. J. Am. Coll. Nutr., 1998, 17(6), 564-570.
[http://dx.doi.org/10.1080/07315724.1998.10718804] [PMID: 9853535]
[58]
Malik, V.S.; Popkin, B.M.; Bray, G.A.; Després, J-P.; Hu, F.B. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation, 2010, 121(11), 1356-1364.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.876185] [PMID: 20308626]
[59]
Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C. Jr. International Diabetes Federation Task Force on Epidemiology and Prevention; Hational Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity. Hational Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation, 2009, 120(16), 1640-1645.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192644] [PMID: 19805654]
[60]
Zargar, A.H.; Shah, N.A.; Masoodi, S.R.; Laway, B.A.; Dar, F.A.; Khan, A.R.; Sofi, F.A.; Wani, A.I. Copper, zinc, and magnesium levels in non-insulin dependent diabetes mellitus. Postgrad. Med. J., 1998, 74(877), 665-668.
[http://dx.doi.org/10.1136/pgmj.74.877.665] [PMID: 10197198]
[61]
Viktorínová, A.; Toserová, E.; Križko, M.; Duracková, Z. Altered metabolism of copper, zinc and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus. Metabolism, 2009, 58(10), 1477-1482.
[http://dx.doi.org/10.1016/j.metabol.2009.04.035] [PMID: 19592053]
[62]
Faure, P.; Barclay, D.; Joyeux-Faure, M.; Halimi, S. Comparison of the effects of zinc alone and zinc associated with selenium and vitamin E on insulin sensitivity and oxidative stress in high-fructose-fed rats. J. Trace Elem. Med. Biol., 2007, 21(2), 113-119.
[http://dx.doi.org/10.1016/j.jtemb.2006.12.005] [PMID: 17499151]
[63]
Jayawardena, R.; Ranasinghe, P.; Galappatthy, P.; Malkanthi, R.; Constantine, G.; Katulanda, P. Effects of zinc supplementation on diabetes mellitus: a systematic review and meta-analysis. Diabetol. Metab. Syndr., 2012, 4(1), 13.
[http://dx.doi.org/10.1186/1758-5996-4-13] [PMID: 22515411]
[64]
McNair, P.; Kiilerich, S.; Christiansen, C.; Christensen, M.S.; Madsbad, S.; Transbol, I. Hyperzincuria in insulin treated diabetes mellitus--its relation to glucose homeostasis and insulin administration. Clin. Chim. Acta, 1981, 112(3), 343-348.
[http://dx.doi.org/10.1016/0009-8981(81)90457-5] [PMID: 7016379]
[65]
Canfield, W.K.; Hambidge, K.M.; Johnson, L.K. Zinc nutriture in type I diabetes mellitus: relationship to growth measures and metabolic control. J. Pediatr. Gastroenterol. Nutr., 1984, 3(4), 577-584.
[http://dx.doi.org/10.1097/00005176-198409000-00018] [PMID: 6384460]
[66]
Pai, L.H.; Prasad, A.S. Cellular zinc in patients with diabetes mellitus. Nutr. Res., 1988, 8(8), 889-897.
[http://dx.doi.org/10.1016/S0271-5317(88)80128-3]
[67]
Hansen, A.F.; Simić, A.; Åsvold, B.O.; Romundstad, P.R.; Midthjell, K.; Syversen, T.; Flaten, T.P. Trace elements in early phase type 2 diabetes mellitus-a population-based study. The HUNT study in Norway. J. Trace Elem. Med. Biol., 2017, 40, 46-53.
[http://dx.doi.org/10.1016/j.jtemb.2016.12.008] [PMID: 28159221]
[68]
Marreiro, D.N.; Geloneze, B.; Tambascia, M.A.; Lerário, A.C.; Halpern, A.; Cozzolino, S.M. Effect of zinc supplementation on serum leptin levels and insulin resistance of obese women. Biol. Trace Elem. Res., 2006, 112(2), 109-118.
[http://dx.doi.org/10.1385/BTER:112:2:109] [PMID: 17028377]
[69]
Gómez-García, A.; Hernández-Salazar, E.; González-Ortiz, M.; Martínez-Abundis, E. [Effect of oral zinc administration on insulin sensitivity, leptin and androgens in obese males] Rev. Med. Chil., 2006, 134(3), 279-284.
[PMID: 16676098]
[70]
Barman, S.; Srinivasan, K. Ameliorative effect of zinc supplementation on compromised small intestinal health in streptozotocin-induced diabetic rats. Chem. Biol. Interact., 2019, 307, 37-50.
[http://dx.doi.org/10.1016/j.cbi.2019.04.018] [PMID: 31009641]
[71]
Norouzi, S.; Adulcikas, J.; Henstridge, D.C.; Sonda, S.; Sohal, S.S.; Myers, S. The zinc transporter Zip7 is downregulated in skeletal muscle of insulin-resistant cells and in mice fed a high-fat diet. Cells, 2019, 8(7), 663.
[http://dx.doi.org/10.3390/cells8070663] [PMID: 31266232]
[72]
Maxel, T.; Smidt, K.; Petersen, C.C.; Honoré, B.; Christensen, A.K.; Jeppesen, P.B.; Brock, B.; Rungby, J.; Palmfeldt, J.; Larsen, A. The zinc transporter Zip14 (SLC39a14) affects beta-cell function: proteomics, gene expression, and insulin secretion studies in INS-1E cells. Sci. Rep., 2019, 9(1), 8589.
[http://dx.doi.org/10.1038/s41598-019-44954-1] [PMID: 31197210]
[73]
Adulcikas, J.; Sonda, S.; Norouzi, S.; Sohal, S.S.; Myers, S. Targeting the zinc transporter ZIP7 in the treatment of insulin resistance and type 2 diabetes. Nutrients, 2019, 11(2), 408.
[http://dx.doi.org/10.3390/nu11020408] [PMID: 30781350]
[74]
Atari-Hajipirloo, S.; Valizadeh, N.; Khadem-Ansari, M.H.; Rasmi, Y.; Kheradmand, F. Altered concentrations of copper, zinc, and iron are associated with increased levels of glycated hemoglobin in patients with type 2 diabetes mellitus and their first-degree relatives. Int. J. Endocrinol. Metab., 2016, 14(2), e33273.
[http://dx.doi.org/10.5812/ijem.33273] [PMID: 27761143]
[75]
Al-Maroof, R.A.; Al-Sharbatti, S.S. Serum zinc levels in diabetic patients and effect of zinc supplementation on glycemic control of type 2 diabetics. Saudi Med. J., 2006, 27(3), 344-350.
[PMID: 16532095]
[76]
Yary, T.; Virtanen, J.K.; Ruusunen, A.; Tuomainen, T.P.; Voutilainen, S. Serum zinc and risk of type 2 diabetes incidence in men: The kuopio ischaemic heart disease risk factor study. J. Trace Elem. Med. Biol., 2016, 33, 120-124.
[http://dx.doi.org/10.1016/j.jtemb.2015.11.001] [PMID: 26653753]
[77]
Flannick, J.; Thorleifsson, G.; Beer, N.L.; Jacobs, S.B.; Grarup, N.; Burtt, N.P.; Mahajan, A.; Fuchsberger, C.; Atzmon, G.; Benediktsson, R.; Blangero, J.; Bowden, D.W.; Brandslund, I.; Brosnan, J.; Burslem, F.; Chambers, J.; Cho, Y.S.; Christensen, C.; Douglas, D.A.; Duggirala, R.; Dymek, Z.; Farjoun, Y.; Fennell, T.; Fontanillas, P.; Forsén, T.; Gabriel, S.; Glaser, B.; Gudbjartsson, D.F.; Hanis, C.; Hansen, T.; Hreidarsson, A.B.; Hveem, K.; Ingelsson, E.; Isomaa, B.; Johansson, S.; Jørgensen, T.; Jørgensen, M.E.; Kathiresan, S.; Kong, A.; Kooner, J.; Kravic, J.; Laakso, M.; Lee, J.Y.; Lind, L.; Lindgren, C.M.; Linneberg, A.; Masson, G.; Meitinger, T.; Mohlke, K.L.; Molven, A.; Morris, A.P.; Potluri, S.; Rauramaa, R.; Ribel-Madsen, R.; Richard, A.M.; Rolph, T.; Salomaa, V.; Segrè, A.V.; Skärstrand, H.; Steinthorsdottir, V.; Stringham, H.M.; Sulem, P.; Tai, E.S.; Teo, Y.Y.; Teslovich, T.; Thorsteinsdottir, U.; Trimmer, J.K.; Tuomi, T.; Tuomilehto, J.; Vaziri-Sani, F.; Voight, B.F.; Wilson, J.G.; Boehnke, M.; McCarthy, M.I.; Njølstad, P.R.; Pedersen, O.; Groop, L.; Cox, D.R.; Stefansson, K.; Altshuler, D. Go-T2D Consortium; T2D-GENES Consortium. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat. Genet., 2014, 46(4), 357-363.
[http://dx.doi.org/10.1038/ng.2915] [PMID: 24584071]
[78]
Merriman, C.; Huang, Q.; Rutter, G.A.; Fu, D. Lipid-tuned zinc transport activity of human ZnT8 correlates with risk for type-2 diabetes. J. Biol. Chem., 2016, 291(53), 26950-26957.
[http://dx.doi.org/10.1074/jbc.M116.764605] [PMID: 27875315]
[79]
Syring, K.E.; Bosma, K.J.; Oeser, J.K.; Shiota, M.; O’Brien, R.M. The diabetes susceptibility gene SLC30A8 that encodes the zinc transporter ZnT8 is a pseudogene in Guinea pigs potentially contributing to low Guinea pig islet zinc content. J. Mol. Evol., 2018, 86(9), 613-617.
[http://dx.doi.org/10.1007/s00239-018-9873-5] [PMID: 30392157]
[80]
Gustafson, B.; Nerstedt, A.; Smith, U. Reduced subcutaneous adipogenesis in human hypertrophic obesity is linked to senescent precursor cells. Nat. Commun., 2019, 10(1), 2757.
[http://dx.doi.org/10.1038/s41467-019-10688-x] [PMID: 31227697]
[81]
Uriu-Adams, J.Y.; Rucker, R.B.; Commisso, J.F.; Keen, C.L. Diabetes and dietary copper alter 67Cu metabolism and oxidant defense in the rat. J. Nutr. Biochem., 2005, 16(5), 312-320.
[http://dx.doi.org/10.1016/j.jnutbio.2005.01.007] [PMID: 15866232]
[82]
Qiu, Q.; Zhang, F.; Zhu, W.; Wu, J.; Liang, M. Copper in diabetes mellitus: a meta-analysis and systematic review of plasma and serum studies. Biol. Trace Elem. Res., 2017, 177(1), 53-63.
[http://dx.doi.org/10.1007/s12011-016-0877-y] [PMID: 27785738]
[83]
Waggoner, D.J.; Bartnikas, T.B.; Gitlin, J.D. The role of copper in neurodegenerative disease. Neurobiol. Dis., 1999, 6(4), 221-230.
[http://dx.doi.org/10.1006/nbdi.1999.0250] [PMID: 10448050]
[84]
Gupta, A.; Lutsenko, S. Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Med. Chem., 2009, 1(6), 1125-1142.
[http://dx.doi.org/10.4155/fmc.09.84] [PMID: 20454597]
[85]
Galhardi, C.M.; Diniz, Y.S.; Faine, L.A.; Rodrigues, H.G.; Burneiko, R.C.; Ribas, B.O.; Novelli, E.L. Toxicity of copper intake: lipid profile, oxidative stress and susceptibility to renal dysfunction. Food Chem. Toxicol., 2004, 42(12), 2053-2060.
[http://dx.doi.org/10.1016/j.fct.2004.07.020] [PMID: 15500942]
[86]
Maritim, A.C.; Sanders, R.A.; Watkins, J.B. III Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxicol., 2003, 17(1), 24-38.
[http://dx.doi.org/10.1002/jbt.10058] [PMID: 12616644]
[87]
Aydin, A.; Orhan, H.; Sayal, A.; Özata, M.; Şahin, G.; Işimer, A. Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: effects of glycemic control. Clin. Biochem., 2001, 34(1), 65-70.
[http://dx.doi.org/10.1016/S0009-9120(00)00199-5] [PMID: 11239518]
[88]
Chasapis, C.T.; Loutsidou, A.C.; Spiliopoulou, C.A.; Stefanidou, M.E. Zinc and human health: an update. Arch. Toxicol., 2012, 86(4), 521-534.
[http://dx.doi.org/10.1007/s00204-011-0775-1] [PMID: 22071549]
[89]
Formigari, A.; Gregianin, E.; Irato, P. The effect of zinc and the role of p53 in copper-induced cellular stress responses. J. Appl. Toxicol., 2013, 33(7), 527-536.
[http://dx.doi.org/10.1002/jat.2854] [PMID: 23401182]
[90]
Zargar, A.H.; Bashir, M.I.; Masoodi, S.R.; Laway, B.A.; Wani, A.I.; Khan, A.R.; Dar, F.A. Copper, zinc and magnesium levels in type-1 diabetes mellitus. Saudi Med. J., 2002, 23(5), 539-542.
[PMID: 12070576]
[91]
Sánchez, C.; López-Jurado, M.; Aranda, P.; Llopis, J. Plasma levels of copper, manganese and selenium in an adult population in southern Spain: influence of age, obesity and lifestyle factors. Sci. Total Environ., 2010, 408(5), 1014-1020.
[http://dx.doi.org/10.1016/j.scitotenv.2009.11.041] [PMID: 20018346]
[92]
Alberti, K.G.; Zimmet, P.; Shaw, J. IDF epidemiology task force consensus group. The metabolic syndrome--a new worldwide definition. Lancet, 2005, 366(9491), 1059-1062.
[http://dx.doi.org/10.1016/S0140-6736(05)67402-8] [PMID: 16182882]
[93]
Obeid, O.; Elfakhani, M.; Hlais, S.; Iskandar, M.; Batal, M.; Mouneimne, Y.; Adra, N.; Hwalla, N. Plasma copper, zinc, and selenium levels and correlates with metabolic syndrome components of lebanese adults. Biol. Trace Elem. Res., 2008, 123(1-3), 58-65.
[http://dx.doi.org/10.1007/s12011-008-8112-0] [PMID: 18288450]
[94]
Zhao, C.; Wang, H.; Zhang, J.; Feng, L. Correlations of trace elements, glucose and body composi-tions in type 2 diabetics. [in Chinese] Wei Sheng Yan Jiu, 2008, 37(5), 600-605.
[PMID: 19069665]
[95]
Błazewicz, A.; Orlicz-Szczesna, G.; Prystupa, A.; Szczesny, P. Use of ion chromatography for the determination of selected metals in blood serum of patients with type 2 diabetes. J. Trace Elem. Med. Biol., 2010, 24(1), 14-19.
[http://dx.doi.org/10.1016/j.jtemb.2009.08.001] [PMID: 20122574]
[96]
Ruíz, C.; Alegría, A.; Barberá, R.; Farré, R.; Lagarda, J. Selenium, zinc and copper in plasma of patients with type 1 diabetes mellitus in different metabolic control states. J. Trace Elem. Med. Biol., 1998, 12(2), 91-95.
[http://dx.doi.org/10.1016/S0946-672X(98)80031-X] [PMID: 9760417]
[97]
Nordberg, G.F.; Fowler, B.A.; Nordberg, M. Handbook on the Toxicology of Metals; Academic Press: London, 2015.
[98]
Lowe, J.; Taveira-da-Silva, R.; Hilário-Souza, E. Dissecting copper homeostasis in diabetes mellitus. IUBMB Life, 2017, 69(4), 255-262.
[http://dx.doi.org/10.1002/iub.1614] [PMID: 28276155]
[99]
Ozcelik, D.; Tuncdemir, M.; Ozturk, M.; Uzun, H. Evaluation of trace elements and oxidative stress levels in the liver and kidney of streptozotocin-induced experimental diabetic rat model. Gen. Physiol. Biophys., 2011, 30(4), 356-363.
[http://dx.doi.org/10.4149/gpb_2011_04_356] [PMID: 22131317]
[100]
Takata, I.; Kawamura, N.; Myint, T.; Miyazawa, N.; Suzuki, K.; Maruyama, N.; Mino, M.; Taniguchi, N. Glycated Cu, Zn-superoxide dismutase in rat lenses: evidence for the presence of fragmentation in vivo. Biochem. Biophys. Res. Commun., 1996, 219(1), 243-248.
[http://dx.doi.org/10.1006/bbrc.1996.0212] [PMID: 8619815]
[101]
Myint, T.; Hoshi, S.; Ookawara, T.; Miyazawa, N.; Suzuki, K.; Taniguchi, N. Immunological detection of glycated proteins in normal and streptozotocin-induced diabetic rats using anti hexitol-lysine IgG. Biochim. Biophys. Acta, 1995, 1272(2), 73-79.
[http://dx.doi.org/10.1016/0925-4439(95)00067-E] [PMID: 7548237]
[102]
Bligt-Lindén, E.; Pihlavisto, M.; Szatmári, I.; Otwinowski, Z.; Smith, D.J.; Lázár, L.; Fülöp, F.; Salminen, T.A. Novel pyridazinone inhibitors for vascular adhesion protein-1 (VAP-1): old target-new inhibition mode. J. Med. Chem., 2013, 56(24), 9837-9848.
[http://dx.doi.org/10.1021/jm401372d] [PMID: 24304424]
[103]
Skalnaya, M.G.; Skalny, A.V. Essential trace elements in human health: a physician’s view; Publishing House of Tomsk State University: Tomsk, 2018.
[104]
Semenova, Y.; Zhunussov, Y.; Pivina, L.; Abisheva, A.; Tinkov, A.; Belikhina, T.; Skalny, A.; Zhanaspayev, M.; Bulegenov, T.; Glushkova, N.; Lipikhina, A.; Dauletyarova, M.; Zhunussova, T.; Bjørklund, G. Trace element biomonitoring in hair and blood of occupationally unexposed population residing in polluted areas of East Kazakhstan and Pavlodar regions. J. Trace Elem. Med. Biol., 2019, 56, 31-37.
[http://dx.doi.org/10.1016/j.jtemb.2019.07.006] [PMID: 31442951]
[105]
Ismailova, A.; Baiyrkhanova, A.; Semenova, Y.; Botabekova, T.; Enin, E. Crosslinked chitosan/PVA film, suturated with 5-fluorouracil for the prevention of proliferative vitreoretinopathy. Int. J. Drug Deliv., 2016, 6(2), 47-51.
[http://dx.doi.org/10.25258/ijddt.v6i2.8887 ]
[106]
Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet, 2014, 383(9933), 1999-2007.
[http://dx.doi.org/10.1016/S0140-6736(14)60613-9] [PMID: 24910231]
[107]
Gillies, C.L.; Abrams, K.R.; Lambert, P.C.; Cooper, N.J.; Sutton, A.J.; Hsu, R.T.; Khunti, K. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ, 2007, 334(7588), 299.
[http://dx.doi.org/10.1136/bmj.39063.689375.55] [PMID: 17237299]
[108]
Raju, K.; Venkataramappa, S.M. Primary hemochromatosis presenting as type 2 diabetes mellitus: a case report with review of literature. Int. J. Appl. Basic Med. Res., 2018, 8(1), 57-60.
[http://dx.doi.org/10.4103/ijabmr.IJABMR_402_16] [PMID: 29552540]
[109]
Long, T.; Wang, R.; Wang, J.; Wang, F.; Xu, Y.; Wei, Y.; Zhou, L.; Zhang, X.; Yuan, J.; Yao, P.; Wei, S.; Guo, H.; Yang, H.; Wu, T.; He, M. Plasma metals and cardiovascular disease in patients with type 2 diabetes. Environ. Int., 2019, 129, 497-506.
[http://dx.doi.org/10.1016/j.envint.2019.05.038] [PMID: 31158596]
[110]
Stranges, S.; Rayman, M.P.; Winther, K.H.; Guallar, E.; Cold, S.; Pastor-Barriuso, R. Effect of selenium supplementation on changes in HbA1c: Results from a multiple-dose, randomized controlled trial. Diabetes Obes. Metab., 2019, 21(3), 541-549.
[http://dx.doi.org/10.1111/dom.13549] [PMID: 30280459]
[111]
Xu, J.; Xu, W.; Yao, H.; Sun, W.; Zhou, Q.; Cai, L. Associations of serum and urinary magnesium with the pre-diabetes, diabetes and diabetic complications in the Chinese Northeast population. PLoS One, 2013, 8(2), e56750.
[http://dx.doi.org/10.1371/journal.pone.0056750] [PMID: 23418599]
[112]
Tanaka, A.; Kaneto, H.; Miyatsuka, T.; Yamamoto, K.; Yoshiuchi, K.; Yamasaki, Y.; Shimomura, I.; Matsuoka, T.A.; Matsuhisa, M. Role of copper ion in the pathogenesis of type 2 diabetes. Endocr. J., 2009, 56(5), 699-706.
[http://dx.doi.org/10.1507/endocrj.K09E-051] [PMID: 19461160]
[113]
Wiernsperger, N.; Rapin, J. Trace elements in glucometabolic disorders: an update. Diabetol. Metab. Syndr., 2010, 2(1), 70.
[http://dx.doi.org/10.1186/1758-5996-2-70] [PMID: 21167072]
[114]
Ortega, R.M.; Rodríguez-Rodríguez, E.; Aparicio, A.; Jiménez, A.I.; López-Sobaler, A.M.; González-Rodríguez, L.G.; Andrés, P. Poor zinc status is associated with increased risk of insulin resistance in Spanish children. Br. J. Nutr., 2012, 107(3), 398-404.
[http://dx.doi.org/10.1017/S0007114511003114] [PMID: 22277170]
[115]
Kelishadi, R.; Hashemipour, M.; Adeli, K.; Tavakoli, N.; Movahedian-Attar, A.; Shapouri, J.; Poursafa, P.; Rouzbahani, A. Effect of zinc supplementation on markers of insulin resistance, oxidative stress, and inflammation among prepubescent children with metabolic syndrome. Metab. Syndr. Relat. Disord., 2010, 8(6), 505-510.
[http://dx.doi.org/10.1089/met.2010.0020] [PMID: 21028969]
[116]
Sitasawad, S.; Deshpande, M.; Katdare, M.; Tirth, S.; Parab, P. Beneficial effect of supplementation with copper sulfate on STZ-diabetic mice (IDDM). Diabetes Res. Clin. Pract., 2001, 52(2), 77-84.
[http://dx.doi.org/10.1016/S0168-8227(00)00249-7] [PMID: 11311961]
[117]
Masad, A.; Hayes, L.; Tabner, B.J.; Turnbull, S.; Cooper, L.J.; Fullwood, N.J.; German, M.J.; Kametani, F.; El-Agnaf, O.M.; Allsop, D. Copper-mediated formation of hydrogen peroxide from the amylin peptide: a novel mechanism for degeneration of islet cells in type-2 diabetes mellitus? FEBS Lett., 2007, 581(18), 3489-3493.
[http://dx.doi.org/10.1016/j.febslet.2007.06.061] [PMID: 17617411]
[118]
Noureldeen, A.F.; Al-Ghamdi, M.A.; Al-solami, Y.S. Maternal status of trace elements in normal pregnancy and in gestational diabetes mellitus. Int. J. Pharma. Phytopharmacol. Res., 2018, 8(1), 1-9.
[119]
Noto, R.; Alicata, R.; Sfogliano, L.; Neri, S.; Bifarella, M. A study of cupremia in a group of elderly diabetics. Acta Diabetol. Lat., 1984, 21(1), 79-85.
[http://dx.doi.org/10.1007/BF02624767] [PMID: 6858545]
[120]
Basaki, M.; Saeb, M.; Nazifi, S.; Shamsaei, H.A. Zinc, copper, iron and chromium concentrations in young patients with type 2 diabetes mellitus. Biol. Trace Elem. Res., 2012, 148(2), 161-164.
[http://dx.doi.org/10.1007/s12011-012-9360-6] [PMID: 22351156]
[121]
Ito, S.; Fujita, H.; Narita, T.; Yaginuma, T.; Kawarada, Y.; Kawagoe, M.; Sugiyama, T. Urinary copper excretion in type 2 diabetic patients with nephropathy. Nephron, 2001, 88(4), 307-312.
[http://dx.doi.org/10.1159/000046013] [PMID: 11474224]
[122]
Cooper, G.J.; Chan, Y-K.; Dissanayake, A.M.; Leahy, F.E.; Keogh, G.F.; Frampton, C.M.; Gamble, G.D.; Brunton, D.H.; Baker, J.R.; Poppitt, S.D. Demonstration of a hyperglycemia-driven pathogenic abnormality of copper homeostasis in diabetes and its reversibility by selective chelation: quantitative comparisons between the biology of copper and eight other nutritionally essential elements in normal and diabetic individuals. Diabetes, 2005, 54(5), 1468-1476.
[http://dx.doi.org/10.2337/diabetes.54.5.1468] [PMID: 15855335]
[123]
Kaur, B.; Henry, J. Micronutrient status in type 2 diabetes: a review. Adv. Food Nutr. Res., 2014, 71, 55-100.
[http://dx.doi.org/10.1016/B978-0-12-800270-4.00002-X] [PMID: 24484939]
[124]
Park, Y.; Zhang, J.; Cai, L. Reappraisal of metallothionein: Clinical implications for patients with diabetes mellitus. J. Diabetes, 2018, 10(3), 213-231.
[http://dx.doi.org/10.1111/1753-0407.12620] [PMID: 29072367]
[125]
Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058-1070.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[126]
Aaseth, J.; Støa‐Birketvedt, G. Glutathione in overweight patients with poorly controlled type 2 diabetes. J. Trace Elem. Exp. Med., 2000, 13(1), 105-111.
[http://dx.doi.org/10.1002/(SICI)1520-670X(2000)13:1<105:AID-JTRA12>3.0.CO;2-B]
[127]
Malavolta, M.; Giacconi, R.; Piacenza, F.; Santarelli, L.; Cipriano, C.; Costarelli, L.; Tesei, S.; Pierpaoli, S.; Basso, A.; Galeazzi, R.; Lattanzio, F.; Mocchegiani, E. Plasma copper/zinc ratio: an inflammatory/nutritional biomarker as predictor of all-cause mortality in elderly population. Biogerontology, 2010, 11(3), 309-319.
[http://dx.doi.org/10.1007/s10522-009-9251-1] [PMID: 19821050]
[128]
Karahan, S.C.; Değer, O.; Örem, A.; Uçar, F.; Erem, C.; Alver, A.; Önder, E. The effects of impaired trace element status on polymorphonuclear leukocyte activation in the development of vascular complications in type 2 diabetes mellitus. Clin. Chem. Lab. Med., 2001, 39(2), 109-115.
[http://dx.doi.org/10.1515/CCLM.2001.019] [PMID: 11341743]
[129]
Neeland, I.J.; Winders, B.R.; Ayers, C.R.; Das, S.R.; Chang, A.Y.; Berry, J.D.; Khera, A.; McGuire, D.K.; Vega, G.L.; de Lemos, J.A.; Turer, A.T. Higher natriuretic peptide levels associate with a favorable adipose tissue distribution profile. J. Am. Coll. Cardiol., 2013, 62(8), 752-760.
[http://dx.doi.org/10.1016/j.jacc.2013.03.038] [PMID: 23602771]
[130]
Hamasaki, H.; Yanai, H.; Kakei, M.; Noda, M.; Ezaki, O. The association between daily physical activity and plasma B-type natriuretic peptide in patients with glucose intolerance: a cross-sectional study. BMJ Open, 2015, 5(1), e006276.
[http://dx.doi.org/10.1136/bmjopen-2014-006276] [PMID: 25596197]
[131]
Li, X.; Cai, L.; Feng, W. Diabetes and metallothionein. Mini Rev. Med. Chem., 2007, 7(7), 761-768.
[http://dx.doi.org/10.2174/138955707781024490] [PMID: 17627587]
[132]
Lee, S-J.; Koh, J.Y. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Mol. Brain, 2010, 3(1), 30.
[http://dx.doi.org/10.1186/1756-6606-3-30] [PMID: 20974010]
[133]
Wang, J.; Wang, S.; Wang, W.; Chen, J.; Zhang, Z.; Zheng, Q.; Liu, Q.; Cai, L. Protection against diabetic cardiomyopathy is achieved using a combination of sulforaphane and zinc in type 1 diabetic OVE26 mice. J. Cell. Mol. Med., 2019, 23(9), 6319-6330.
[http://dx.doi.org/10.1111/jcmm.14520] [PMID: 31270951]
[134]
Coyle, P.; Philcox, J.C.; Carey, L.C.; Rofe, A.M. Metallothionein: the multipurpose protein. Cell. Mol. Life Sci., 2002, 59(4), 627-647.
[http://dx.doi.org/10.1007/s00018-002-8454-2] [PMID: 12022471]
[135]
Krężel, A.; Maret, W. The functions of metamorphic metallothioneins in zinc and copper metabolism. Int. J. Mol. Sci., 2017, 18(6), 1237.
[http://dx.doi.org/10.3390/ijms18061237] [PMID: 28598392]
[136]
Vašák, M.; Meloni, G. Chemistry and biology of mammalian metallothioneins. J. Biol. Inorg. Chem., 2011, 16(7), 1067-1078.
[http://dx.doi.org/10.1007/s00775-011-0799-2] [PMID: 21647776]
[137]
Klaassen, C.D.; Liu, J.; Choudhuri, S. Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu. Rev. Pharmacol. Toxicol., 1999, 39(1), 267-294.
[http://dx.doi.org/10.1146/annurev.pharmtox.39.1.267] [PMID: 10331085]
[138]
Cai, L.; Wang, J.; Li, Y.; Sun, X.; Wang, L.; Zhou, Z.; Kang, Y.J. Inhibition of superoxide generation and associated nitrosative damage is involved in metallothionein prevention of diabetic cardiomyopathy. Diabetes, 2005, 54(6), 1829-1837.
[http://dx.doi.org/10.2337/diabetes.54.6.1829] [PMID: 15919806]
[139]
Chen, H.; Carlson, E.C.; Pellet, L.; Moritz, J.T.; Epstein, P.N. Overexpression of metallothionein in pancreatic β-cells reduces streptozotocin-induced DNA damage and diabetes. Diabetes, 2001, 50(9), 2040-2046.
[http://dx.doi.org/10.2337/diabetes.50.9.2040] [PMID: 11522669]
[140]
Hussain, S.A.; Khadim, H.M.; Khalaf, B.H.; Ismail, S.H.; Hussein, K.I.; Sahib, A.S. Effects of melatonin and zinc on glycemic control in type 2 diabetic patients poorly controlled with metformin. Saudi Med. J., 2006, 27(10), 1483-1488.
[PMID: 17013468]
[141]
Ge, T.; Yu, Y.; Cui, J.; Cai, L. The adaptive immune role of metallothioneins in the pathogenesis of diabetic cardiomyopathy: good or bad. Am. J. Physiol. Heart Circ. Physiol., 2019, 317(2), H264-H275.
[http://dx.doi.org/10.1152/ajpheart.00123.2019] [PMID: 31100011]
[142]
Chen, M.D.; Lin, P.Y.; Cheng, V.; Lin, W.H. Zinc supplementation aggravates body fat accumulation in genetically obese mice and dietary-obese mice. Biol. Trace Elem. Res., 1996, 52(2), 125-132.
[http://dx.doi.org/10.1007/BF02789454] [PMID: 8773753]
[143]
Simon, S.F.; Taylor, C.G. Dietary zinc supplementation attenuates hyperglycemia in db/db mice. Exp. Biol. Med. (Maywood), 2001, 226(1), 43-51.
[http://dx.doi.org/10.1177/153537020122600107] [PMID: 11368237]
[144]
Liu, L.; Cui, W.; Zhang, S.; Kong, F.; Pedersen, M.; Wen, Y.; Lv, J. Effect of glucose tolerance factor (GTF) from high chromium yeast on glucose metabolism in insulin-resistant 3T3-L1 adipocytes. RSC Advances, 2015, 5(5), 3482-3490.
[http://dx.doi.org/10.1039/C4RA10343B]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy