Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Purification of Classical Swine Fever Virus E2 Subunit Vaccines Based on High Affinity Peptide Ligand

Author(s): Fangyu Wang*, Qiuying Yu, Man Hu, Guangxu Xing, Dong Zhao and Gaiping Zhang*

Volume 28, Issue 5, 2021

Published on: 03 November, 2020

Page: [554 - 562] Pages: 9

DOI: 10.2174/0929866527666201103152100

Price: $65

Abstract

Background: The purification of expressed proteins is the most critical part of subunit-- vaccine production. Protein-purification methods such as affinity chromatography and ion exchange still have the shortcomings of being time consuming and complicated. With the rapid development of computational molecular-simulation technology, structure-based peptide-ligand design has become feasible.

Objection: We aimed to apply molecular docking for a peptide ligand designed for classical swine fever virus (CSFV) E2 purification.

Methods: Computational-derived peptides were synthesized, and the in vitro binding interaction with E2 was investigated. The effects of purification on E2 were also evaluated.

Results: The best peptide recognizing E2 was P6, which had a sequence of KKFYWRYWEH. Based on kinetic surface plasmon resonance (SPR) analysis, the apparent affinity constant of P6 was found to be 148 nM. Importantly, P6 showed suitable binding affinity and specificity for E2 purification from transgenic rice seeds. Evaluation of immune antibodies in mice showed that the antibody- blocking rate on day 42 after inoculation reached 86.18% and 90.68%.

Conclusion: The computational-designed peptide in this study has high sensitivity and selectivity and is thus useful for the purification of CSFV E2. The novel method of design provided a broad platform and powerful tool for protein-peptide screening, as well as new insights into CSFV vaccine design.

Keywords: Classical swine fever virus, glycoprotein E2, computational design, affinity peptide ligand, purification, protein- peptide screening.

Graphical Abstract
[1]
Becher, P.; Avalos Ramirez, R.; Orlich, M.; Cedillo Rosales, S.; König, M.; Schweizer, M.; Stalder, H.; Schirrmeier, H.; Thiel, H.J. Genetic and antigenic characterization of novel pestivirus genotypes: implications for classification. Virology, 2003, 311(1), 96-104.
[http://dx.doi.org/10.1016/S0042-6822(03)00192-2] [PMID: 12832207]
[2]
Meyers, G.; Thiel, H.J. Molecular characterization of pestiviruses. Adv. Virus Res., 1996, 47, 53-118.
[http://dx.doi.org/10.1016/S0065-3527(08)60734-4] [PMID: 8895831]
[3]
Leifer, I.; Ruggli, N.; Blome, S. Approaches to define the viral genetic basis of classical swine fever virus virulence. Virology, 2013, 438(2), 51-55.
[http://dx.doi.org/10.1016/j.virol.2013.01.013] [PMID: 23415391]
[4]
Weiland, F.; Weiland, E.; Unger, G.; Saalmuller, A.; Thiel, H.J. Localization of pestiviral envelope proteins E(rns) and E2 at the cell surface and on isolated particles. J. Gen. Virol., 1999, 80(5), 1157-1165.
[5]
König, M.; Lengsfeld, T.; Pauly, T.; Stark, R.; Thiel, H.J. Classical swine fever virus: independent induction of protective immunity by two structural glycoproteins. J. Virol., 1995, 69(10), 6479-6486.
[http://dx.doi.org/10.1128/JVI.69.10.6479-6486.1995] [PMID: 7666549]
[6]
van Gennip, H.G.; van Rijn, P.A.; Widjojoatmodjo, M.N.; de Smit, A.J.; Moormann, R.J. Chimeric classical swine fever viruses containing envelope protein E(RNS) or E2 of bovine viral diarrhoea virus protect pigs against challenge with CSFV and induce a distinguishable antibody response. Vaccine, 2000, 19(4-5), 447-459.
[http://dx.doi.org/10.1016/S0264-410X(00)00198-5] [PMID: 11027808]
[7]
Lin, M.; Lin, F.; Mallory, M.; Clavijo, A. Deletions of structural glycoprotein E2 of classical swine fever virus strain alfort/187 resolve a linear epitope of monoclonal antibody WH303 and the minimal N-terminal domain essential for binding immunoglobulin G antibodies of a pig hyperimmune serum. J. Virol., 2000, 74(24), 11619-11625.
[http://dx.doi.org/10.1128/JVI.74.24.11619-11625.2000] [PMID: 11090160]
[8]
Risatti, G.R.; Holinka, L.G.; Fernandez Sainz, I.; Carrillo, C.; Kutish, G.F.; Lu, Z.; Zhu, J.; Rock, D.L.; Borca, M.V. Mutations in the carboxyl terminal region of E2 glycoprotein of classical swine fever virus are responsible for viral attenuation in swine. Virology, 2007, 364(2), 371-382.
[http://dx.doi.org/10.1016/j.virol.2007.02.025] [PMID: 17418362]
[9]
Hanke, A.T.; Ottens, M. Purifying biopharmaceuticals: knowledge-based chromatographic process development. Trends Biotechnol., 2014, 32(4), 210-220.
[http://dx.doi.org/10.1016/j.tibtech.2014.02.001] [PMID: 24630477]
[10]
Wingfield, P.T. Overview of the purification of recombinant proteins. Curr. Protoc. Protein Sci., 2015, 80, 1-6, 35.
[http://dx.doi.org/10.1002/0471140864.ps0601s80] [PMID: 25829302]
[11]
Transfiguracion, J.; Jaalouk, D.E.; Ghani, K.; Galipeau, J.; Kamen, A. Size-exclusion chromatography purification of high-titer vesicular stomatitis virus G glycoprotein-pseudotyped retrovectors for cell and gene therapy applications. Hum. Gene. Ther., 2003, 14(12), 1139-1153.
[http://dx.doi.org/10.1089/104303403322167984] [PMID: 12908966]
[12]
Saito, M.; Yoshitake, T.; Okuyama, T. Separation and analysis of charged isomers of monoclonal immunoglobulin G by ceramic hydroxyapatite chromatography. Prep. Biochem. Biotechnol., 2016, 46(3), 215-221.
[http://dx.doi.org/10.1080/10826068.2014.995811] [PMID: 25569109]
[13]
Balaj, L.; Atai, N.A.; Chen, W.; Mu, D.; Tannous, B.A.; Breakefield, X.O.; Skog, J.; Maguire, C.A. Heparin affinity purification of extracellular vesicles. Sci. Rep., 2015, 5, 10266.
[http://dx.doi.org/10.1038/srep10266]
[14]
Wellhoefer, M.; Sprinzl, W.; Hahn, R.; Jungbauer, A. Continuous processing of recombinant proteins: integration of refolding and purification using simulated moving bed size-exclusion chromatography with buffer recycling. J. Chromatogr. A, 2014, 1337, 48-56.
[http://dx.doi.org/10.1016/j.chroma.2014.02.016]
[15]
Liang, J.F.; Zhen, L.; Chang, L.C.; Yang, V.C. A less toxic heparin antagonist--low molecular weight protamine. Biochemistry (Mosc.), 2003, 68(1), 116-120.
[http://dx.doi.org/10.1023/A:1022109905487] [PMID: 12693985]
[16]
Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: science and market. Drug Discov. Today, 2010, 15(1-2), 40-56.
[http://dx.doi.org/10.1016/j.drudis.2009.10.009] [PMID: 19879957]
[17]
Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc., 2016, 11(5), 905-919.
[http://dx.doi.org/10.1038/nprot.2016.051] [PMID: 27077332]
[18]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[19]
Cavasotto, C.N.; Orry, A.J. Ligand docking and structure-based virtual screening in drug discovery. Curr. Top. Med. Chem., 2007, 7(10), 1006-1014.
[http://dx.doi.org/10.2174/156802607780906753] [PMID: 17508934]
[20]
Tiwari, R.; Mahasenan, K.; Pavlovicz, R.; Li, C.; Tjarks, W. Carborane clusters in computational drug design: a comparative docking evaluation using AutoDock, FlexX, Glide, and Surflex. J. Chem. Inf. Model., 2009, 49(6), 1581-1589.
[http://dx.doi.org/10.1021/ci900031y] [PMID: 19449853]
[21]
Wang, T.; Wu, M.B.; Zhang, R.H.; Chen, Z.J.; Hua, C.; Lin, J.P.; Yang, L.R. Advances in computational structure-based drug design and application in drug discovery. Curr. Top. Med. Chem., 2016, 16(9), 901-916.
[http://dx.doi.org/10.2174/1568026615666150825142002] [PMID: 26303430]
[22]
Li, H.; Yang, J.; Bao, D.; Hou, J.; Zhi, Y.; Yang, Y.; Ji, P.; Zhou, E.; Qiao, S.; Zhang, G. Development of an immunochromatographic strip for detection of antibodies against porcine reproductive and respiratory syndrome virus. J. Vet. Sci., 2017, 18(3), 307-316.
[http://dx.doi.org/10.4142/jvs.2017.18.3.307] [PMID: 28057905]
[23]
Liu, F.F.; Wang, T.; Dong, X.Y.; Sun, Y. Rational design of affinity peptide ligand by flexible docking simulation. J. Chromatogr. A, 2007, 1146(1), 41-50.
[http://dx.doi.org/10.1016/j.chroma.2007.01.130] [PMID: 17298835]
[24]
Tang, Y.; Zhu, W.; Chen, K.; Jiang, H. New technologies in computer-aided drug design: Toward target identification and new chemical entity discovery. Drug Discov. Today. Technol., 2006, 3(3), 307-313.
[http://dx.doi.org/10.1016/j.ddtec.2006.09.004] [PMID: 24980533]
[25]
Pawson, T. Organization of cell-regulatory systems through modular-protein-interaction domains. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2003, 361(1807), 1251-1262.
[http://dx.doi.org/10.1098/rsta.2003.1197] [PMID: 12816610]
[26]
Naider, F.; Anglister, J. Peptides in the treatment of AIDS. Curr. Opin. Struct. Biol., 2009, 19(4), 473-482.
[http://dx.doi.org/10.1016/j.sbi.2009.07.003] [PMID: 19632107]
[27]
Petsalaki, E.; Russell, R.B. Peptide-mediated interactions in biological systems: new discoveries and applications. Curr. Opin. Biotechnol., 2008, 19(4), 344-350.
[http://dx.doi.org/10.1016/j.copbio.2008.06.004] [PMID: 18602004]
[28]
Jiang, B.; Liu, W.; Qu, H.; Meng, L.; Song, S.; Ouyang, T.; Shou, C. A novel peptide isolated from a phage display peptide library with trastuzumab can mimic antigen epitope of HER-2. J. Biol. Chem., 2005, 280(6), 4656-4662.
[http://dx.doi.org/10.1074/jbc.M411047200] [PMID: 15536075]
[29]
Hwang, H.J.; Ryu, M.Y.; Park, C.Y.; Ahn, J.; Park, H.G.; Choi, C.; Ha, S.D.; Park, T.J.; Park, J.P. High sensitive and selective electrochemical biosensor: label-free detection of human norovirus using affinity peptide as molecular binder. Biosens. Bioelectron., 2017, 87, 164-170.
[30]
Orlova, A.; Magnusson, M.; Eriksson, T.L.; Nilsson, M.; Larsson, B.; Höidén-Guthenberg, I.; Widström, C.; Carlsson, J.; Tolmachev, V.; Ståhl, S.; Nilsson, F.Y. Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res., 2006, 66(8), 4339-4348.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3521] [PMID: 16618759]
[31]
Adams, B.L.; Finch, A.S.; Hurley, M.M.; Sarkes, D.A.; Stratis-Cullum, D.N. Genetically engineered peptides for inorganics: study of an unconstrained bacterial display technology and bulk aluminum alloy. Adv. Mater., 2013, 25(33), 4585-4591.
[http://dx.doi.org/10.1002/adma.201301646] [PMID: 23868808]
[32]
Vanhee, P.; van der Sloot, A.M.; Verschueren, E.; Serrano, L.; Rousseau, F.; Schymkowitz, J. Computational design of peptide ligands. Trends Biotechnol., 2011, 29(5), 231-239.
[http://dx.doi.org/10.1016/j.tibtech.2011.01.004] [PMID: 21316780]
[33]
London, N.; Raveh, B.; Cohen, E.; Fathi, G.; Schueler-Furman, O. Rosetta FlexPepDock web server high resolution modeling of peptide-protein interactions. Nucleic Acids Res, 2011, 39(Web Server issue), W249-W253.
[34]
Lee, H.; Heo, L.; Lee, M.S.; Seok, C. GalaxyPepDock: a protein-peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res., 2015, 43(W1), W431-435.
[http://dx.doi.org/10.1093/nar/gkv495] [PMID: 25969449]
[35]
Kurcinski, M.; Jamroz, M.; Blaszczyk, M.; Kolinski, A.; Kmiecik, S. CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res., 2015, 43(W1), W419-24.
[http://dx.doi.org/10.1093/nar/gkv456] [PMID: 25943545]
[36]
Morris, J.; Jayanthi, S.; Langston, R.; Daily, A.; Kight, A.; McNabb, D.S.; Henry, R.; Kumar, T. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins. Protein Expr. Purif., 2016, 216, 93-103.
[http://dx.doi.org/10.1016/j.pep.2016.05.013]
[37]
Lagoutte, P.; Mignon, C.; Donnat, S.; Stadthagen, G.; Mast, J.; Sodoyer, R.; Lugari, A.; Werle, B. Scalable chromatography-based purification of virus-like particle carrier for epitope based influenza A vaccine produced in Escherichia coli. J. Virol. Methods, 2016.
[http://dx.doi.org/10.1016/j.jviromet.2016.02.011]
[38]
Hou, S.; Shi, L.; Lei, H. Biotin-streptavidin affinity purification of RNA-protein complexes assembled in vitro. In: Methods in Molecular Biology; Lin, R.J., Ed.; Humana Press: New York, NY, 2016. Vol. 1412.
[http://dx.doi.org/10.1007/978-1-4939-3591-8_3]
[39]
Wood, D.W. New trends and affinity tag designs for recombinant protein purification. Curr. Opin. Struct. Biol., 2014, 26, 54-61.
[http://dx.doi.org/10.1016/j.sbi.2014.04.006]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy