skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

Technical Report ·
DOI:https://doi.org/10.2172/1095244· OSTI ID:1095244
 [1]
  1. Cleveland State Univ., Cleveland, OH (United States)

This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

Research Organization:
Cleveland State Univ., Cleveland, OH (United States)
Sponsoring Organization:
USDOE. Nuclear Energy University Programs (NEUP)
DOE Contract Number:
AC07-05ID14517
OSTI ID:
1095244
Report Number(s):
DOE/NEUP-09-838; TRN: US1601166
Country of Publication:
United States
Language:
English