Internal Medicine
Online ISSN : 1349-7235
Print ISSN : 0918-2918
ISSN-L : 0918-2918
ORIGINAL ARTICLES
Inhibition of Calcium2+/Calmodulin-dependent Protein Kinase Type IV Ameliorates Experimental Nephrotic Syndrome
Qiangguo AoQingli ChengQiang MaXiaodan WangSheng Liu
Author information
JOURNAL OPEN ACCESS

2013 Volume 52 Issue 10 Pages 1035-1041

Details
Abstract

Objective Evidence has demonstrated that Ca2+/calmodulin-dependent protein kinase type IV (CaMKIV) contributes to altered cytokine production by promoting the production of inflammatory cytokines. This study aimed to explore the protective role and underlying mechanisms of CaMKIV inhibition in experimental nephrotic syndrome.
Methods BALB/c mice received single intravenous injections of adriamycin (10 mg/kg) then were sacrificed at two, four and six weeks. In the second study, treatment with KN-93, a CaMKIV inhibitor, or vehicle administered via intraperitoneal injection was started five days after adriamycin injection. Functional and pathologic parameters, the presence of inflammatory infiltration and the expressions of pro-inflammatory cytokines were assessed.
Results The CaMKIV protein expression levels were upregulated in the mice with adriamycin nephropathy, which was significantly inhibited by KN-93 (p<0.01). As compared with the vehicle-treated controls, KN-93 treatment resulted in marked suppression of proteinuria and serum creatinine at week 6 (p<0.01), but not at two weeks after induction of the disease. KN-93 inhibited glomerulosclerosis and the development of tubulointerstitial lesions. The renal alpha-smooth muscle actin (α-SMA) expression was also significantly suppressed by KN-93 treatment at week 6 (p<0.01). Moreover, KN-93 inhibited the renal monocyte chemoattractant protein-1 (MCP-1) expression, paralleled by a reduction in the interstitial infiltration of macrophages and T-cells (p<0.01).
Conclusion Our findings suggest that activation of CaMKIV signaling is involved in the progression of glomerular diseases with a proteinuric state. Our data therefore justify the development of small molecule CaMKIV inhibitors for the treatment of clinical nephrotic syndrome.

Content from these authors
© 2013 by The Japanese Society of Internal Medicine
Previous article Next article
feedback
Top