Skip to main content
Log in

Current Management of Juvenile Myelomonocytic Leukemia and the Impact of RAS Mutations

  • Current Opinion
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Juvenile myelomonocytic leukemia (JMML) is a rare clonal myelodysplastic/myeloproliferative disorder that affects young children. It is characterized by hypersensitivity of JMML cells to granulocyte-macrophage colony-stimulating factor (GM-CSF) in vitro. The pathogenesis of JMML seems to arise from constitutional activation of the GM-CSF/RAS (a GTPase) signaling pathway, a result of mutations in RAS, NF1, PTPN11, and CBL that interfere with downstream components of the pathway. Most patients with JMML usually experience an aggressive clinical course, and hematopoietic stem cell transplantation (HSCT) is currently the only curative treatment, although the high rates of relapses and graft failures are of great concern. In contrast, a certain proportion of patients experience a stable clinical course for a considerable period of time, and sometimes the disease even spontaneously resolves without any treatment.

Recent studies have provided us with increased knowledge of genotype-phenotype correlations in JMML, and suggested that differences in clinical courses may reflect genetic status. Thus, genotype-based management is of current international interest, especially for JMML with RAS mutations. Cumulative evidence suggests that RAS mutations can be related to favorable clinical outcomes, and HSCT may not have to be a mandatory therapeutic option for a portion of patients with this mutation, although a consensus regarding genotype-based management has not yet been achieved. Further efforts toward identifying which patients who will do well without HSCT are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1

Similar content being viewed by others

References

  1. Jaffe ES, Harris NL, Stein H, et al. WHO classification of tumors. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press, 2001.

    Google Scholar 

  2. Emanuel PD, Bates LJ, Castleberry RP, et al. Selective hypersensitivity to granulocyte-macrophage colony-stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. Blood 1991 Mar 1; 77 (5): 925–9.

    PubMed  CAS  Google Scholar 

  3. Side LE, Emanuel PD, Taylor B, et al. Mutations of the NF1 gene in children with juvenile myelomonocytic leukemia without clinical evidence of neurofibromatosis, type 1. Blood 1998 Jul 1; 92 (1): 267–72.

    PubMed  CAS  Google Scholar 

  4. Flotho C, Valcamonica S, Mach-Pascual S, et al. RAS mutations and clonality analysis in children with juvenile myelomonocytic leukemia (JMML). Leukemia 1999 Jan; 13 (1): 32–7.

    Article  PubMed  CAS  Google Scholar 

  5. Tartaglia M, Niemeyer CM, Fragale A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 2003 Jun; 34 (2): 148–50.

    Article  PubMed  CAS  Google Scholar 

  6. Loh ML, Sakai DS, Flotho C, et al. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood 2009 Aug 27; 114 (9): 1859–63.

    Article  PubMed  CAS  Google Scholar 

  7. Niemeyer CM, Arico M, Basso G, et al. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS). Blood 1997 May 15; 89 (10): 3534–43.

    PubMed  CAS  Google Scholar 

  8. Niemeyer CM, Fenu S, Hasle H, et al. Differentiating juvenile myelomonocytic leukemia from infectious disease [reply]. Blood 1998; 91 (1): 365–7.

    Google Scholar 

  9. Manabe A, Yoshimasu T, Ebihara Y, et al. Viral infections in juvenile myelomonocytic leukemia: prevalence and clinical implications. J Pediatr Hematol Oncol 2004 Oct; 26 (10): 636–41.

    Article  PubMed  Google Scholar 

  10. Chan RJ, Cooper T, Kratz CP, et al. Juvenile myelomonocytic leukemia: a report from the 2nd International JMML Symposium. Leuk Res 2009 Mar; 33 (3): 355–62.

    Article  PubMed  Google Scholar 

  11. deVries AC, Zwaan CM, van denHeuvel-Eibrink MM. Molecular basis of juvenile myelomonocytic leukemia. Haematologica 2010 Feb; 95 (2): 179–82.

    Article  PubMed  Google Scholar 

  12. Emanuel PD. RAS pathway mutations in juvenile myelomonocytic leukemia. Acta Haematol 2008; 119 (4): 207–11.

    Article  PubMed  CAS  Google Scholar 

  13. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 1990 Nov 8; 348 (6297): 125–32.

    Article  PubMed  CAS  Google Scholar 

  14. deVries AC, Stam RW, Kratz CP, et al. Mutation analysis of the BRAF oncogene in juvenile myelomonocytic leukemia. Haematologica 2007 Nov; 92 (11): 1574–5.

    Article  PubMed  Google Scholar 

  15. Kratz CP, Niemeyer CM, Thomas C, et al. Mutation analysis of Son of Sevenless in juvenile myelomonocytic leukemia. Leukemia 2007 May; 21 (5): 1108–9.

    PubMed  CAS  Google Scholar 

  16. Zecca M, Bergamaschi G, Kratz C, et al. JAK2 V617F mutation is a rare event in juvenile myelomonocytic leukemia. Leukemia 2007 Feb; 21 (2): 367–9.

    Article  PubMed  CAS  Google Scholar 

  17. Yoshida N, Yagasaki H, Takahashi Y, et al. Mutation analysis of SIPA1 in patients with juvenile myelomonocytic leukemia. Br J Haematol 2008 Sep; 142 (5): 850–1.

    Article  PubMed  Google Scholar 

  18. Miyauchi J, Asada M, Sasaki M, et al. Mutations of the N-ras gene in juvenile chronic myelogenous leukemia. Blood 1994 Apr 15; 83 (8): 2248–54.

    PubMed  CAS  Google Scholar 

  19. Xu GF, O’Connell P, Viskochil D, et al. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 1990 Aug 10; 62 (3): 599–608.

    Article  PubMed  CAS  Google Scholar 

  20. Bader-Meunier B, Tchernia G, Mielot F, et al. Occurrence of myeloproliferative disorder in patients with Noonan syndrome. J Pediatr 1997 Jun; 130 (6): 885–9.

    Article  PubMed  CAS  Google Scholar 

  21. Tartaglia M, Mehler EL, Goldberg R, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 2001 Dec; 29 (4): 465–8.

    Article  PubMed  CAS  Google Scholar 

  22. Hof P, Pluskey S, Dhe-Paganon S, et al. Crystal structure of the tyrosine phosphatase SHP-2. Cell 1998 Feb 20; 92 (4): 441–50.

    Article  PubMed  CAS  Google Scholar 

  23. Muramatsu H, Makishima H, Jankowska AM, et al. Mutations of an E3 ubiquitin ligase c-Cbl but not TET2 mutations are pathogenic in juvenile myelomonocytic leukemia. Blood 2010 Mar 11; 115 (10): 1969–75.

    Article  PubMed  CAS  Google Scholar 

  24. Perez B, Mechinaud F, Galambrun C, et al. Germline mutations of the CBL gene define a new genetic syndrome with predisposition to juvenile myelomonocytic leukaemia. J Med Genet 2010 Oct; 47 (10): 686–91.

    Article  PubMed  CAS  Google Scholar 

  25. Niemeyer CM, Kang MW, Shin DH, et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet 2010 Sep; 42 (9): 794–800.

    Article  PubMed  CAS  Google Scholar 

  26. Schmidt MH, Dikic I. The Cbl interactome and its functions. Nat Rev Mol Cell Biol 2005 Dec; 6 (12): 907–18.

    Article  PubMed  CAS  Google Scholar 

  27. Zenker M, Lehmann K, Schulz AL, et al. Expansion of the genotypic and phenotypic spectrum in patients with KRAS germline mutations. J Med Genet 2007 Feb; 44 (2): 131–5.

    Article  PubMed  CAS  Google Scholar 

  28. Niihori T, Aoki Y, Narumi Y, et al. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet 2006 Mar; 38 (3): 294–6.

    Article  PubMed  CAS  Google Scholar 

  29. Schubbert S, Zenker M, Rowe SL, et al. Germline KRAS mutations cause Noonan syndrome. Nat Genet 2006 Mar; 38 (3): 331–6.

    Article  PubMed  CAS  Google Scholar 

  30. Lo FS, Lin JL, Kuo MT, et al. Noonan syndrome caused by germline KRAS mutation in Taiwan: report of two patients and a review of the literature. Eur J Pediatr 2009 Aug; 168 (8): 919–23.

    Article  PubMed  CAS  Google Scholar 

  31. Kratz CP, Niemeyer CM, Zenker M. An unexpected new role of mutant Ras: perturbation of human embryonic development. J Mol Med 2007 Mar; 85 (3): 227–35.

    Article  PubMed  CAS  Google Scholar 

  32. Cirstea IC, Kutsche K, Dvorsky R, et al. A restricted spectrum of NRAS mutations causes Noonan syndrome. Nat Genet 2010 Jan; 42 (1): 27–9.

    Article  PubMed  CAS  Google Scholar 

  33. DeFilippi P, Zecca M, Lisini D, et al. Germ-line mutation of the NRAS gene may be responsible for the development of juvenile myelomonocytic leukaemia. Br J Haematol 2009 Dec; 147 (5): 706–9.

    Article  PubMed  Google Scholar 

  34. Sarkozy A, Carta C, Moretti S, et al. Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes: molecular diversity and associated phenotypic spectrum. Hum Mutat 2009 Apr; 30 (4): 695–702.

    Article  PubMed  CAS  Google Scholar 

  35. Fukuda M, Horibe K, Miyajima Y, et al. Spontaneous remission of juvenile chronic myelomonocytic leukemia in an infant with Noonan syndrome. J Pediatr Hematol Oncol 1997 Mar–Apr; 19 (2): 177–9.

    Article  PubMed  CAS  Google Scholar 

  36. Silvio F, Carlo L, Elena B, et al. Transient abnormal myelopoiesis in Noonan syndrome. J Pediatr Hematol Oncol 2002 Dec; 24 (9): 763–4.

    Article  PubMed  Google Scholar 

  37. Kratz CP, Niemeyer CM, Castleberry RP, et al. The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. Blood 2005 Sep 15; 106 (6): 2183–5.

    Article  PubMed  CAS  Google Scholar 

  38. Matsuda K, Shimada A, Yoshida N, et al. Spontaneous improvement of hematologic abnormalities in patients having juvenile myelomonocytic leukemia with specific RAS mutations. Blood 2007 Jun 15; 109 (12): 5477–80.

    Article  PubMed  CAS  Google Scholar 

  39. Manabe A, Okamura J, Yumura-Yagi K, et al. Allogeneic hematopoietic stem cell transplantation for 27 children with juvenile myelomonocytic leukemia diagnosed based on the criteria of the International JMML Working Group. Leukemia 2002 Apr; 16 (4): 645–9.

    Article  PubMed  CAS  Google Scholar 

  40. Passmore SJ, Chessells JM, Kempski H, et al. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia in the UK: a population-based study of incidence and survival. Br J Haematol 2003 Jun; 121 (5): 758–67.

    Article  PubMed  Google Scholar 

  41. Locatelli F, Nollke P, Zecca M, et al. Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia (JMML): results of the EWOG-MDS/EBMT trial. Blood 2005 Jan 1; 105 (1): 410–9.

    Article  PubMed  CAS  Google Scholar 

  42. Niemeyer CM, Tartaglia M, Jung A, et al. Clinical characteristics of patients with JMML according to mutational status. Leukemia Research 2006; 30 Suppl. 2: S5.

    Article  Google Scholar 

  43. Yoshida N, Yagasaki H, Xu Y, et al. Correlation of clinical features with the mutational status of GM-CSF signaling pathway-related genes in juvenile myelomonocytic leukemia. Pediatr Res 2009 Mar; 65 (3): 334–40.

    Article  PubMed  CAS  Google Scholar 

  44. Flotho C, Kratz CP, Bergstrasser E, et al. Genotype-phenotype correlation in cases of juvenile myelomonocytic leukemia with clonal RAS mutations. Blood 2008 Jan 15; 111 (2): 966–7; author reply 7–8.

    Article  PubMed  CAS  Google Scholar 

  45. Bresolin S, Zecca M, Flotho C, et al. Gene expression-based classification as an independent predictor of clinical outcome in juvenile myelomonocytic leukemia. J Clin Oncol 2010 Apr 10; 28 (11): 1919–27.

    Article  PubMed  Google Scholar 

  46. Doisaki S, Muramatsu H, Hama A, et al. A favorable outcome in children with juvenile myelomonocytic leukemia (JMML) with RAS mutations. Blood 2010 Nov 19; 116 (21): 1197–8.

    Google Scholar 

  47. Takagi M, Shinoda K, Piao J, et al. Autoimmune lymphoproliferative syndrome-like disease with somatic KRAS mutation. Blood 2011 Mar 10; 117 (10): 2887–90.

    Article  PubMed  CAS  Google Scholar 

  48. Manabe A, Kojima S. 11th Symposium on Aplastic Anemia and 9th Symposium on Myelodysplastic Syndromes in Children. Pediatr Int 2005 Oct; 47 (5): 572–4.

    Article  PubMed  Google Scholar 

  49. Yabe M, Sako M, Yabe H, et al. A conditioning regimen of busulfan, fludarabine, and melphalan for allogeneic stem cell transplantation in children with juvenile myelomonocytic leukemia. Pediatr Transplant 2008 Dec; 12 (8): 862–7.

    Article  PubMed  CAS  Google Scholar 

  50. Yoshida N, Hirabayashi S, Watanabe S, et al. A prospective registration of children with juvenile myelomonocytic leukemia: follow-up of 75 patients. Rinsho Ketsueki 2011 Dec; 52 (12): 1853–8.

    PubMed  Google Scholar 

  51. Smith FO, King R, Nelson G, et al. Unrelated donor bone marrow transplantation for children with juvenile myelomonocytic leukaemia. Br J Haematol 2002 Mar; 116 (3): 716–24.

    Article  PubMed  Google Scholar 

  52. Olk-Batz C, Poetsch AR, Nöllke P, et al. Aberrant DNA methylation characterizes juvenile myelomonocytic leukemia with poor outcome. Blood 2011 May 5; 117 (18): 4871–80.

    Article  PubMed  CAS  Google Scholar 

  53. Yoshimi A, Niemeyer CM, Bohmer V, et al. Chimaerism analyses and subsequent immunological intervention after stem cell transplantation in patients with juvenile myelomonocytic leukaemia. Br J Haematol 2005 May; 129 (4): 542–9.

    Article  PubMed  Google Scholar 

  54. Archambeault S, Flores NJ, Yoshimi A, et al. Development of an allele-specific minimal residual disease assay for patients with juvenile myelomonocytic leukemia. Blood 2008 Feb 1; 111 (3): 1124–7.

    Article  PubMed  CAS  Google Scholar 

  55. Matsuda K, Sakashita K, Taira C, et al. Quantitative assessment of PTPN11 or RAS mutations at the neonatal period and during the clinical course in patients with juvenile myelomonocytic leukaemia. Br J Haematol 2010 Feb; 148 (4): 593–9.

    Article  PubMed  CAS  Google Scholar 

  56. Flotho C, Kratz C, Niemeyer CM. Targeting RAS signaling pathways in juvenile myelomonocytic leukemia. Curr Drug Targets 2007 Jun; 8 (6): 715–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this article. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Kojima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, N., Doisaki, S. & Kojima, S. Current Management of Juvenile Myelomonocytic Leukemia and the Impact of RAS Mutations. Pediatr Drugs 14, 157–163 (2012). https://doi.org/10.2165/11631360-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11631360-000000000-00000

Keywords

Navigation