Skip to main content
Log in

Towards Therapy Using RNA Interference

  • Targeted Therapeutics
  • Published:
American Journal of Pharmacogenomics

Abstract

Small interfering RNA (siRNA) molecules are short sequences of double-stranded RNA 19–27 bp in length, which suppress expression of target genes by inducing the breakdown of the cognate mRNA through mechanisms that are still being elucidated. siRNA molecules can be chemically synthesized or prepared through digestion of larger double-stranded RNA molecules using recombinant dicer or RNAase III enzyme. siRNA molecules can also be encoded by plasmid or virus vectors or expressed in transgenic animals. Design of siRNA sequences that efficiently suppress target genes can sometimes be challenging, although digestion of large double-standed RNA species with recombinant dicer or RNAase III may remove the necessity for testing multiple candidate siRNA. Exogenous siRNA can suppress translation for varying amounts of time depending on the half-life of the protein targeted. Vector-mediated approaches may improve duration but their use can be limited by the permanency and efficiency of transduction. Potential therapeutic targets for siRNA include viral and non-viral pathogens, cancer, neurodegenerative diseases, septic shock and macular degeneration. Suppression of expression via siRNA is also an extremely useful research tool for ascertaining gene function. Looking ahead to clinical applications, it will be important to know the consequences of inadvertent suppression of non-targeted sequences. If safety can be established, siRNA has the potential to significantly impact the field of molecular medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 1990; 2: 279–89

    PubMed  CAS  Google Scholar 

  2. van der Krol AR, Mur LA, Beld M, et al. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 1990; 2: 291–9

    PubMed  Google Scholar 

  3. Fire A, Xu SQ, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature 1998; 391: 806–11

    Article  PubMed  CAS  Google Scholar 

  4. Hasuwa H, Kaseda K, Einarsdottir T, et al. Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett 2002; 532: 227–30

    Article  PubMed  CAS  Google Scholar 

  5. Carmell MA, Zhang L, Conklin DS, et al. Germline transmission of RNAi in mice. Nat Struct Biol 2003; 10: 91–2

    Article  PubMed  CAS  Google Scholar 

  6. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–8

    Article  PubMed  CAS  Google Scholar 

  7. Tiscornia G, Singer O, Ikawa M, et al. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci U S A 2002; 100: 1844–8

    Article  Google Scholar 

  8. Paul CP, Good PD, Winer I, et al. Effective expression of small interfering RNA in human cells. Nat Biotechnol 2002; 20: 505–8

    Article  PubMed  CAS  Google Scholar 

  9. Couzin J. Breakthrough of the year: small RNAs make big splash. Science 2002; 298: 2296–7

    Article  PubMed  CAS  Google Scholar 

  10. Kitabwalla M, Ruprecht RM. RNA interference: a new weapon against HIV and beyond. N Engl J Med 2002; 347: 1364–7

    Article  PubMed  CAS  Google Scholar 

  11. Chiu YL, Rana TM. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol Cell 2002; 10: 549–61

    Article  PubMed  CAS  Google Scholar 

  12. Dernburg AF, Karpen GH. A chromosome RNAissance. Cell 2002; 111: 159–62

    Article  PubMed  CAS  Google Scholar 

  13. Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science 2003; 301: 336–8

    Article  PubMed  CAS  Google Scholar 

  14. Bernstein E, Kim SY, Carmell MA, et al. Dicer is essential for mouse development. Nat Genet 2003; 35: 215–7

    Article  PubMed  CAS  Google Scholar 

  15. Gil J, Esteban M. Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 2000; 5: 107–14

    Article  PubMed  CAS  Google Scholar 

  16. Kumar M, Carmichael GG. Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol Mol Biol Rev 1998; 62: 1415–34

    PubMed  CAS  Google Scholar 

  17. Shi Y. Mammalian RNAi for the masses. Trends Genet 2003; 19: 9–12

    Article  PubMed  Google Scholar 

  18. Sorensen DR, Leirdal M, Sioud M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol 2003; 327: 761–6

    Article  PubMed  CAS  Google Scholar 

  19. McCaffrey AP, Meuse L, Pham TT, et al. RNA interference in adult mice. Nature 2002; 418: 38–9

    Article  PubMed  CAS  Google Scholar 

  20. Myers JW, Jones JT, Meyer T, et al. Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing. Nat Biotechnol 2003; 21: 324–8

    Article  PubMed  CAS  Google Scholar 

  21. Kawasaki H, Suyama E, Iyo M, et al. siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Res 2003; 31: 981–7

    Article  PubMed  CAS  Google Scholar 

  22. Reich SJ, Fosnot J, Kuroki A, et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis 2003; 9: 210–6

    PubMed  CAS  Google Scholar 

  23. Xia H, Mao Q, Paulson HL, et al. siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 2002; 20: 1006–10

    Article  PubMed  CAS  Google Scholar 

  24. McManus MT, Petersen CP, Haines BB, et al. Gene silencing using micro-RNA designed hairpins. RNA 2002; 8: 842–50

    Article  PubMed  CAS  Google Scholar 

  25. Holen T, Amarzguioui M, Wiiger MT, et al. Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res 2002; 30: 1757–66

    Article  PubMed  CAS  Google Scholar 

  26. Harborth J, Elbashir SM, Vandenburgh K, et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev 2003; 13: 83–105

    Article  PubMed  CAS  Google Scholar 

  27. Sohail M, Doran G, Riedemann J, et al. A simple and cost-effective method for producing small interfering RNAs with high efficacy. Nucleic Acids Res 2003; 31: e38

    Article  PubMed  Google Scholar 

  28. Chiu YL, Rana TM. siRNA function in RNAi: a chemical modification analysis. RNA 2003; 9: 1034–48

    Article  PubMed  CAS  Google Scholar 

  29. Braasch DA, Jensen S, Liu Y, et al. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 2003; 42: 7967–75

    Article  PubMed  CAS  Google Scholar 

  30. Alisky JM, Davidson BL. Gene therapy for amyotrophic lateral sclerosis and other motor neuron diseases. Hum Gene Ther 2000; 11: 2315–29

    Article  PubMed  CAS  Google Scholar 

  31. Davidson BL, Breakefield XO. Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 2003; 4: 353–64

    Article  PubMed  CAS  Google Scholar 

  32. Davidson BL. Hepatic diseases: hitting the target with inhibitory RNAs. N Engl J Med 2003; 349: 2357–9

    Article  PubMed  CAS  Google Scholar 

  33. Randall G, Grakoui A, Rice CM. Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc Natl Acad Sci U S A 2003; 100: 235–40

    Article  PubMed  CAS  Google Scholar 

  34. McCaffrey AP, Nakai H, Pandey K, et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 2003; 21: 639–44

    Article  PubMed  CAS  Google Scholar 

  35. Jia Q, Sun R. Inhibition of gammaherpesvirus replication by RNA interference. J Virol 2003; 77: 3301–6

    Article  PubMed  CAS  Google Scholar 

  36. Wong SK, Lazinski DW. Replicating hepatitis delta virus RNA is edited in the nucleus by the small form of ADAR1. Proc Natl Acad Sci U S A 2002; 99: 15118–23

    Article  PubMed  CAS  Google Scholar 

  37. Chang J, Taylor JM. Susceptibility of human hepatitis delta virus RNAs to small interfering RNA action. J Virol 2003; 77: 9728–31

    Article  PubMed  CAS  Google Scholar 

  38. Lee NS, Dohjima T, Bauer G, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 2002; 20: 500–5

    PubMed  CAS  Google Scholar 

  39. Qin XF, An DS, Chen IS, et al. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci U S A 2003; 100: 183–8

    Article  PubMed  CAS  Google Scholar 

  40. Capodici J, Kariko K, Weissman D. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J Immunol 2002; 169: 5196–201

    PubMed  Google Scholar 

  41. Gitlin L, Karelsky S, Andino R. corrigendum: Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 2003; 423: 197

    Article  CAS  Google Scholar 

  42. Bitko V, Barik S. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BMC Microbiol 2001; 1: 34

    Article  PubMed  CAS  Google Scholar 

  43. Ge Q, McManus MT, Nguyen T, et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci U S A 2003; 100: 2718–23

    Article  PubMed  CAS  Google Scholar 

  44. Furuya T, Kessler P, Jardim A, et al. Glucose is toxic to glycosome-deficient trypanosomes. Proc Natl Acad Sci U S A 2002; 99: 14177–82

    Article  PubMed  CAS  Google Scholar 

  45. Ngo H, Tschudi C, Gull K, et al. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci U S A 1998; 95: 14687–92

    Article  PubMed  CAS  Google Scholar 

  46. Harrison TR, Fauci AS. Harrison’s principles of internal medicine. 14th ed. New York: McGraw-Hill, 1998

    Google Scholar 

  47. Wu H, Hait WN, Yang JM. Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res 2003; 63: 1515–9

    PubMed  CAS  Google Scholar 

  48. Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624–9

    Article  PubMed  CAS  Google Scholar 

  49. Mayerle J, Friess H, Buchler MW, et al. Up-regulation, nuclear import, and tumor growth stimulation of the adhesion protein p120 in pancreatic cancer. Gastroenterology 2003; 124: 949–60

    Article  PubMed  CAS  Google Scholar 

  50. Aoki Y, Cioca DP, Oidaira H, et al. RNA interference may be more potent than antisense RNA in human cancer cell lines. Clin Exp Pharmacol Physiol 2003; 30: 96–102

    Article  PubMed  CAS  Google Scholar 

  51. Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002; 2: 243–7

    Article  PubMed  CAS  Google Scholar 

  52. Paulson HL. Protein fate in neurodegenerative proteinopathies: polyglutamine diseases join the (mis)fold. Am J Hum Genet 1999; 64(2): 339–45

    Article  PubMed  CAS  Google Scholar 

  53. Miller VM, Xia H, Marrs GL, et al. Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci U S A 2003; 100: 7195–200

    Article  PubMed  CAS  Google Scholar 

  54. Caplen NJ, Taylor JP, Statham VS, et al. Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference. Hum Mol Genet 2002; 11(2): 175–84

    Article  PubMed  CAS  Google Scholar 

  55. Gonzalez-Alegre P, Miller VM, Davidson BL, et al. Toward therapy for DYT1 dystonia: allele-specific silencing of mutant TorsinA. Ann Neurol 2003; 53: 781–7

    Article  PubMed  CAS  Google Scholar 

  56. Ding H, Schwarz DS, Keene A, et al. Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis. Aging Cell 2003; 2: 209–17

    Article  PubMed  CAS  Google Scholar 

  57. Torocsik B, Angelastro JM, Greene LA. The basic region and leucine zipper transcription factor MafK is a new nerve growth factor-responsive immediate early gene that regulates neurite outgrowth. J Neurosci 2002; 22: 8971–80

    PubMed  CAS  Google Scholar 

  58. Eto M, Bock R, Brautigan DL, et al. Cerebellar long-term synaptic depression requires PKC-mediated activation of CPI-17, a myosin/moesin phosphatase inhibitor. Neuron 2002; 36: 1145–58

    Article  PubMed  CAS  Google Scholar 

  59. Kloss S, Furneaux H, Mulsch A. Post-transcriptional regulation of soluble guanylyl cyclase expression in rat aorta. J Biol Chem 2003; 278: 2377–83

    Article  PubMed  Google Scholar 

  60. Du KL, Ip HS, Li J, et al. Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Mol Cell Biol 2003; 23: 2425–37

    Article  PubMed  CAS  Google Scholar 

  61. Bose A, Guilherme A, Robida SI, et al. Glucose transporter recycling in response to insulin is facilitated by myosin Myo1c. Nature 2002; 420: 821–4

    Article  PubMed  CAS  Google Scholar 

  62. Gergely F, Draviam VM, Raff JW. The ch-TOG/XMAP215 protein is essential for spindle pole organization in human somatic cells. Genes Dev 2003; 17: 336–41

    Article  PubMed  CAS  Google Scholar 

  63. Na KY, Woo SK, Lee SD, et al. Silencing of TonEBP/NFAT5 transcriptional activator by RNA interference. J Am Soc Nephrol 2003; 14: 283–8

    Article  PubMed  CAS  Google Scholar 

  64. Goldberg M, Stucki M, Falck J, et al. MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 2003; 421: 952–6

    Article  PubMed  CAS  Google Scholar 

  65. Stewart GS, Wang B, Bignell CR, et al. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 2003; 421: 961–6

    Article  PubMed  CAS  Google Scholar 

  66. Ahn S, Nelson CD, Garrison TR, et al. Desensitization, internalization, and signaling functions of beta-arrestins demonstrated by RNA interference. Proc Natl Acad Sci U S A 2003; 100: 1740–4

    Article  PubMed  CAS  Google Scholar 

  67. Irie N, Sakai N, Ueyama T, et al. Subtype- and species-specific knockdown of PKC using short interfering RNA. Biochem Biophys Res Commun 2002; 298: 738–43

    Article  PubMed  CAS  Google Scholar 

  68. Lou Z, Minter-Dykhouse K, Wu X, et al. MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature 2003; 421: 957–61

    Article  PubMed  CAS  Google Scholar 

  69. Dai Y, Vaught TD, Boone J, et al. Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 2002; 20: 251–5

    Article  PubMed  CAS  Google Scholar 

  70. Lai L, Kolber-Simonds D, Park KW, et al. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 2002; 295: 1089–92

    Article  PubMed  CAS  Google Scholar 

  71. Hemann MT, Fridman JS, Zilfou JT, et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat Genet 2003; 33: 396–400

    Article  PubMed  CAS  Google Scholar 

  72. Jackson AL, Bartz SR, Schelter J, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003; 21: 635–7

    Article  PubMed  CAS  Google Scholar 

  73. Semizarov D, Frost L, Sarthy A, et al. Specificity of short interfering RNA determined through gene expression signatures. Proc Natl Acad Sci U S A 2003; 100: 6347–52

    Article  PubMed  CAS  Google Scholar 

  74. Chi JT, Chang HY, Wang NN, et al. Genomewide view of gene silencing by small interfering RNAs. Proc Natl Acad Sci U S A 2003; 100: 6343–6

    Article  PubMed  CAS  Google Scholar 

  75. Check E. Regulators split on gene therapy as patient shows signs of cancer. Nature 2002; 419: 545–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Christine McLennan and Steven Eliason, from the University of Iowa, Department of Internal Medicine, for their assistance. This work was supported by NIH HD44093, The Hereditary Disease Foundation and the Roy J. Carver Trust (BLD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beverly L. Davidson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alisky, J.M., Davidson, B.L. Towards Therapy Using RNA Interference. Am J Pharmacogenomics 4, 45–51 (2004). https://doi.org/10.2165/00129785-200404010-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200404010-00005

Keywords

Navigation