Skip to main content
Log in

Proteomics

Making Sense of Genomic Information for Drug Discovery

  • Technology
  • Published:
American Journal of Pharmacogenomics

Abstract

As an increasing number of available genomes triggers a gold rush in modern biology, the scientific challenge shifts towards understanding the total of the encoded information, most notably the proteins, their structures, functions and interactions. Currently this work is in its early stages but the near future will bring a merger of biology, engineering and informatics with a far broader impact on society than pure genomics has had so far. The challenge of characterizing the structures and functions of all proteins in a given cell demands technological advances beyond the classical methodologies of protein biochemistry. Mass spectrometry techniques for high-throughput protein identification, including peptide mass fingerprinting, sequence tagging and mass spectrometry on full-length proteins are providing the driving force behind proteomics endeavors. New technologies are needed to move high-resolution protein structure determination to an industrial scale. Nonetheless, improvements in techniques for the separation of intrinsic membrane proteins are enabling proteomics efforts towards identifying drug targets within this important class of biomolecules. Beyond the acquisition of data on sequences, structures and interactions, however, the major work in drug discovery remains: the screening of large candidate compound libraries combined with clever medicinal chemistry that guarantees selective action and defined delivery of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860–921

    Article  Google Scholar 

  2. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001; 291: 1304–51

    Article  PubMed  CAS  Google Scholar 

  3. Black DL. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 2000; 103: 367–70

    Article  PubMed  CAS  Google Scholar 

  4. O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975; 250: 4007–21

    PubMed  Google Scholar 

  5. Banks RE, Dunn MJ, Hochstrasser DF, et al. Proteomics: new perspectives, new biomedical opportunities. Lancet 2000; 356: 1749–56

    Article  PubMed  CAS  Google Scholar 

  6. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 1988; 60: 2299–301

    Article  PubMed  CAS  Google Scholar 

  7. Fenyo D. Identifying the proteome: software tools. Curr Opin Biotechnol 2000; 11: 391–5

    Article  PubMed  CAS  Google Scholar 

  8. Clauser KR, Baker P, Burlingame AL. Role of accurate mass measurement (+/− 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem 1999; 71: 2871–82

    Article  PubMed  CAS  Google Scholar 

  9. Binz PA, Muller M, Walther D, et al. A molecular scanner to automate proteomic research and to display proteome images. Anal Chem 1999; 71: 4981–8

    Article  PubMed  CAS  Google Scholar 

  10. Wilkins MR, Gasteiger E, Gooley AA, et al. High-throughput mass spectrometric discovery of protein post-translational modifications. J Mol Biol 1999; 289: 645–57

    Article  PubMed  CAS  Google Scholar 

  11. Anderson NG, Matheson A, Anderson NL. Back to the future: the human protein index HPI and the agenda for post-proteomic biology. Proteomics 2001; 1: 3–12

    Article  PubMed  CAS  Google Scholar 

  12. Fenn JB, Mann M, Meng CK, et al. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989; 246: 64–71

    Article  PubMed  CAS  Google Scholar 

  13. le Coutre J, Whitelegge JP, Gross A, et al. Proteomics on full-length membrane proteins using mass spectrometry. Biochemistry 2000; 39: 4237–42

    Article  PubMed  Google Scholar 

  14. Whitelegge JP, Gundersen CB, Faull KF. Electrospray-ionization mass spectrometry of intact intrinsic membrane proteins. Protein Sci 1998; 7: 1423–30

    Article  PubMed  CAS  Google Scholar 

  15. Whitelegge JP, Penn B, To T, et al. Methionine oxidation within the cerebrosidesulfate activator protein (CSAct or Saposin B). Protein Sci 2000; 9: 1618–30

    Article  PubMed  CAS  Google Scholar 

  16. Loo JA, Brown J, Critchley G, et al. High sensitivity mass spectrometric methods for obtaining intact molecular weights from gel-separated proteins. Electrophoresis 1999; 20: 743–8

    Article  PubMed  CAS  Google Scholar 

  17. Jensen ON, Houthaeve T, Shevchenko A, et al. Identification of the major membrane and core proteins of vaccinia virus by two-dimensional electrophoresis. J Virol 1996; 70: 7485–97

    PubMed  CAS  Google Scholar 

  18. Gygi SP, Corthals GL, Zhang Y, et al. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A 2000; 97: 9390–5

    Article  PubMed  CAS  Google Scholar 

  19. Corthals GL, Wasinger VC, Hochstrasser DF, et al. The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 2000; 21: 1104–15

    Article  PubMed  CAS  Google Scholar 

  20. Taylor RS, Wu CC, Hays LG, et al. Proteomics of rat liver Golgi complex: minor proteins are identified through sequential fractionation. Electrophoresis 2000; 21: 3441–59

    Article  PubMed  CAS  Google Scholar 

  21. Holt LJ, Enever C, de Wildt RM, et al. The use of recombinant antibodies in proteomics. Curr Opin Biotechnol 2000; 11: 445–9

    Article  PubMed  CAS  Google Scholar 

  22. Comisarow MB, Marshall AG. Fourier transform ion cyclotron resonance spectroscopy. Chem Phys Lett 1974; 25: 282–3

    Article  CAS  Google Scholar 

  23. Kelleher NL, Zubarev RA, Bush K, et al. Localization of labile posttranslational modifications by electron capture dissociation: the case of gamma-carboxyglutamic acid. Anal Chem 1999; 71: 4250–3

    Article  PubMed  CAS  Google Scholar 

  24. Kelleher NL, Lin HY, Valaskovic GA, et al. Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry. J Am Chem Soc 2001; 121: 806–12

    Article  Google Scholar 

  25. Blanco DR, Whitelegge JP, Miller JN, et al. Demonstration by mass spectrometry that purified native Treponema pallidum rare outer membrane protein 1 (Tromp1) has a cleaved signal peptide. J Bacteriol 1999; 181: 5094–8

    PubMed  CAS  Google Scholar 

  26. Whitelegge JP, Jewess P, Pickering MG, et al. Sequence analysis of photoaffinitylabelled peptides derived by proteolysis of photosystem-2 reaction centres from thylakoid membranes treated with [14C]azidoatrazine. Eur J Biochem 1992; 207: 1077–84

    Article  PubMed  CAS  Google Scholar 

  27. Whitelegge JP, le Coutre J, Lee JC, et al. Toward the bilayer proteome, electrospray ionization-mass spectrometry of large, intact transmembrane proteins. Proc Natl Acad Sci U S A 1999; 96: 10695–8

    Article  PubMed  CAS  Google Scholar 

  28. Turk E, Kim O, le Coutre J, et al. Molecular characterization of Vibrio parahaemolyticus vSGLT: a model for sodium-coupled sugar cotransporters. J Biol Chem 2000; 275: 25711–6

    Article  PubMed  CAS  Google Scholar 

  29. Jensen PK, Pasa-Tolic L, Anderson GA, et al. Probing proteomes using capillary isoelectric focusing-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 1999; 71: 2076–84

    Article  PubMed  CAS  Google Scholar 

  30. Oda Y, Huang K, Cross FR, et al. Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A 1999; 96: 6591–6

    Article  PubMed  CAS  Google Scholar 

  31. Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999; 17: 994–9

    Article  PubMed  CAS  Google Scholar 

  32. Blackstock WP, Weir MP. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 1999; 17: 121–7

    Article  PubMed  CAS  Google Scholar 

  33. Mann M. Quantitative proteomics? Nat Biotechnol 1999; 17: 954–5

    Article  PubMed  CAS  Google Scholar 

  34. Chalmers MJ, Gaskell SJ. Advances in mass spectrometry for proteome analysis. Curr Opin Biotechnol 2000; 11: 384–90

    Article  PubMed  CAS  Google Scholar 

  35. Gygi SP, Rist B, Aebersold R. Measuring gene expression by quantitative proteome analysis. Curr Opin Biotechnol 2000; 11: 396–401

    Article  PubMed  CAS  Google Scholar 

  36. Pandey A, Mann M. Proteomics to study genes and genomes. Nature 2000; 405: 837–46

    Article  PubMed  CAS  Google Scholar 

  37. Patterson SD. Proteomics: the industrialization of protein chemistry. Curr Opin Biotechnol 2000; 11: 413–8

    Article  PubMed  CAS  Google Scholar 

  38. le Coutre J, Kaback HR. Structure function relationships of integral membrane proteins: membrane transporters vs channels. Biopolymers Peptide Sci 2001; 55: 297–307

    Article  Google Scholar 

  39. Voss J, Hubbell WL, Kaback HR. Distance determination in proteins using designed metal ion binding sites and site-directed spin labeling: application to the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A 1995; 92: 12300–3

    Article  PubMed  CAS  Google Scholar 

  40. Frillingos S, Sahin-Toth M, Wu J, et al. Cys-scanning mutagenesis: a novel approach to structure function relationships in polytopic membrane proteins. FASEB J 1998; 12: 1281–99

    PubMed  CAS  Google Scholar 

  41. Fleming KG. Riding the wave: structural and energetic principles of helical membrane proteins. Curr Opin Biotechnol 2000; 11: 67–71

    Article  PubMed  CAS  Google Scholar 

  42. Eisenberg D, Marcotte EM, Xenarios I, et al. Protein function in the post-genomic era. Nature 2000; 405: 823–6

    Article  PubMed  CAS  Google Scholar 

  43. Marcotte EM, Pellegrini M, Thompson MJ, et al. A combined algorithm for genome-wide prediction of protein function. Nature 1999; 402: 83–6

    Article  PubMed  CAS  Google Scholar 

  44. Sanchez R, Pieper U, Melo F, et al. Protein structure modeling for structural genomics. Nat Struct Biol 2000; 7 Suppl.: 986–90

    Article  PubMed  CAS  Google Scholar 

  45. Ito T, Tashiro K, Muta S, et al. Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci U S A 2000; 97: 1143–7

    Article  PubMed  CAS  Google Scholar 

  46. Schwikowski B, Uetz P, Fields S. A network of protein-protein interactions in yeast. Nat Biotechnol 2000; 18: 1257–61

    Article  PubMed  CAS  Google Scholar 

  47. Uetz P, Giot L, Cagney G, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000; 403: 623–7

    Article  PubMed  CAS  Google Scholar 

  48. Shevchenko A, Zachariae W. A strategy for the characterization of protein interaction networks by mass spectrometry. Biochem Soc Trans 1999; 27: 549–54

    PubMed  CAS  Google Scholar 

  49. Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 1997; 18: 533–7

    Article  PubMed  CAS  Google Scholar 

  50. Vastag B. Detection network gives early cancer tests a push. J Natl Cancer Inst 2000; 92: 786–8

    Article  PubMed  CAS  Google Scholar 

  51. Holt LJ, Bussow K, Walter G, et al. By-passing selection: direct screening for antibody-antigen interactions using protein arrays. Nucleic Acids Res 2000; 28: E72

    Article  PubMed  CAS  Google Scholar 

  52. Ge H. UPA, a universal protein array system for quantitative detection of proteinprotein, protein-DNA, protein-RNA and protein-ligand interactions. Nucleic Acids Res 2000; 28: e3

    Article  PubMed  CAS  Google Scholar 

  53. Zhu H, Klemic JF, Chang S, et al. Analysis of yeast protein kinases using protein chips. Nat Genet 2000; 26: 283–9

    Article  PubMed  CAS  Google Scholar 

  54. O’Brien SJ, Menotti-Raymond M, Murphy WJ, et al. The promise of comparative genomics in mammals. Science 1999; 286: 458–81

    Article  PubMed  Google Scholar 

  55. Broder S, Venter JC. Whole genomes: the foundation of new biology and medicine. Curr Opin Biotechnol 2000; 11: 581–5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

On the occasion of his 65th birthday we dedicate this article to H. R. Kaback to honor his numerous and invaluable contributions to membrane biochemistry!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes le Contre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitelegge, J.P., le Contre, J. Proteomics. Am J Pharmacogenomics 1, 29–35 (2001). https://doi.org/10.2165/00129785-200101010-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200101010-00004

Keywords

Navigation