Skip to main content
Log in

The Prevention and Management of Cardiovascular Complications of Chemotherapy in Patients with Cancer

  • Therapy in Practice
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Cardiac toxicity of chemotherapeutic agents is a rapidly evolving area of increasing significance because of the increasing pool of long-term cancer survivors. The spectrum of cardiotoxicity with chemotherapeutic agents includes hypertension, QTc prolongation, acute cardiomyopathy, and bradyarrhythmias. The most common issue to arise has been cardiomyopathy with anthracyclines. Preventative strategies that have met with some success have included the use of less cardiotoxic analogs such as epirubicin and liposomal anthracycline preparations. The cardioprotectant agent dexrazoxane reduces cardiomyopathy but there are significant toxicity issues. Therefore, the main strategy for preventing cardiotoxicity remains careful monitoring with radionuclide angiography or echocardiography. The role of investigational markers of myocardial injury, such as troponin T or brain natriuretic peptide, remains of great interest. Management is according to conventional management of congestive heart failure.

Trastuzumab is an antibody therapy directed against the human epidermal growth factor receptor-2 (HER2) receptor, which increases survival in patients with metastatic breast cancer and is under evaluation in the adjuvant setting. It also causes a decrease in left ventricular ejection fraction (LVEF) in a minority of patients. Incidence is increased if trastuzumab is given in conjunction with paclitaxel or anthracyclines. It differs from anthracycline cardiotoxicity in that it is not cumulative dose-dependent and often improves after withdrawal of treatment. Re-treatment with trastuzumab is often possible.

Novel agents under development offer a different spectrum of toxicity to existing anticancer drugs and it appears likely that cardiovascular toxicity will be an important issue for many of these drugs, particularly those that target the tumor vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1

Similar content being viewed by others

References

  1. Mertens AC, Yasui Y, Neglia JP, et al. Late mortality experience in five-year survivors of childhood and adolescent cancer: the childhood cancer survivor study. J Clin Oncol 2001; 19(13): 3163–72.

    PubMed  CAS  Google Scholar 

  2. Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 1979; 91: 710–7.

    Google Scholar 

  3. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344(11): 783–92.

    Article  PubMed  CAS  Google Scholar 

  4. Abraham R, Crump M, MacKinnon J, et al. Alteration in cardiac function following high dose chemotherapy for breast cancer [abstract 336]. Proceedings of the 34th ASCO Annual Meeting; 1998 May 16–19; Los Angeles [online]. Available from URL: http://www.asco.org [Accessed 2005 Jun 2].

    Google Scholar 

  5. Soignet SL, Frankel SR, Douer D, et al. United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukaemia. J Clin Oncol 2001; 19(18): 3852–60.

    PubMed  CAS  Google Scholar 

  6. Keefe DL. The cardiotoxic potential of the 5-HT(3) receptor antagonist antiemetics: is there cause for concern? Oncologist 2002; 7(1): 65–72.

    Article  PubMed  CAS  Google Scholar 

  7. Rowinsky EK, Eisenhauer EA, Chaudhry V, et al. Clinical toxicities encountered with paclitaxel (Taxol). Semin Oncol 1993 Aug; 20(4 Suppl. 3): 1–15.

    PubMed  CAS  Google Scholar 

  8. Becker K, Erckenbrecht JF, Haussinger D, et al. Cardiotoxicity of the antiproliferative compound fluorouracil. Drugs 1999 Apr; 57(4): 475–84.

    Article  PubMed  CAS  Google Scholar 

  9. Goss PE, Ingle JN, Martino S, et al. A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N Engl J Med 2003 Nov; 349(19): 1793–802.

    Article  PubMed  CAS  Google Scholar 

  10. Meinardi MT, Gietema JA, van der Graaf WT, et al. Cardiovascular morbidity in long-term survivors of metastatic testicular cancer. J Clin Oncol 2000 Apr; 18(8): 1725–32.

    PubMed  CAS  Google Scholar 

  11. Hurwitz H, Fehrenbacher L, Cartwright T, et al. Bevacizumab (a monoclonal antibody to vascular endothelial growth factor) prolongs survival in first-line colorectal cancer (CRC): results of a phase III trial of bevacizumab in combination with bolus IFL (irinotecan, 5-fluorouracil, leucovorin) as first-line therapy in subjects with metastatic CRC [abstract 3646]. Proceedings of the 39th ASCO Annual Meeting; 2003 May 31–Jun 3; Chicago [online]. Available from URL: http://www.asco.org/hurwitz_no3646 [Accessed 2005 Jun 2].

    Google Scholar 

  12. Shan K, Lincoff AM, Young JB. Anthracycline-induced cardiotoxicity. Ann Intern Med 1996; 125: 47–58.

    PubMed  CAS  Google Scholar 

  13. Steinberg JS, Cohen AJ, Wasserman AG, et al. Acute arrhythmogenicity of doxorubicin administration. Cancer 1987; 60: 1213–8.

    Article  PubMed  CAS  Google Scholar 

  14. Goldstein LJ, O’Neill A, Sparano JA, et al. LVEF assessment of adjuvant doxorubicin/cyclophosphamide (AC) vs doxorubicin/docetaxel (AT) in early stage breast cancer: cardiac safety results of ECOG 2197 [abstract 73]. The Eastern Cooperative Oncology Group. Proc Am Soc Clin Oncol 2003; 22: 19.

    Google Scholar 

  15. The Criteria Committee of the New York Heart Association. Diseases of the heart and blood vessels: nomenclature and criteria for diagnosis. 6th ed. Boston (MA): Little Brown, 1964.

    Google Scholar 

  16. Bonneterre JM, Roche H, Kerbrat P, et al. Long-term cardiac follow-up in free of disease patients (pts) after receiving 6 FEC 50 vs 6 FEC 100 (FASG-05 trial) as adjuvant chemotherapy (CT) for node-positive (N+) breast cancer (BC) [abstract 154]. Proceedings of the 38th ASCO Annual Meeting; 2002 May 18–21; Florida [online]. Available from URL: http://www.asco.org [Accessed 2005 Jun 2].

    Google Scholar 

  17. Tjeerdsma G, Meinardi MT, van der Graaf WT, et al. Early detection of anthracycline induced cardiotoxicity in asymptomatic patients with normal left ventricular systolic function: autonomic versus echocardiographic variables. Heart 1999; 81(4): 419–23.

    PubMed  CAS  Google Scholar 

  18. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 2003 Jun 1; 97(11): 2869–79.

    Article  PubMed  CAS  Google Scholar 

  19. Sorensen K, Levitt GA, Bull C, et al. Late anthracycline cardiotoxicity after childhood cancer: a prospective longitudinal study. Cancer 2003 Apr 15; 97(8): 1991–8.

    Article  PubMed  CAS  Google Scholar 

  20. Fukumi D, Uchikoba Y, Maeda M, et al. Longitudinal evaluation of anthracycline cardiotoxicity by signal-averaged electrocardiography in children with cancer. Pediatr Int 2002; 44(2): 134–40.

    Article  PubMed  CAS  Google Scholar 

  21. Meinardi MT, van Veldhuisen DJ, Gietema JA, et al. Prospective evaluation of early cardiac damage induced by epirubicin-containing adjuvant chemotherapy and locoregional radiotherapy in breast cancer patients. J Clin Oncol 2001; 19(10): 2746–53.

    PubMed  CAS  Google Scholar 

  22. Gupta M, Thaler HT, Steinherz L. Presence of prolonged dispersion of QT intervals in late survivors of childhood anthracycline therapy. Pediatr Hematol Oncol 2002; 19(8): 533–42.

    Article  PubMed  CAS  Google Scholar 

  23. Narula J, Acio ER, Narula N, et al. Annexin-V imaging for noninvasive detection of cardiac allograft rejection. Nat Med 2001; 7(12): 1347–52.

    Article  PubMed  CAS  Google Scholar 

  24. Valdes Olmos RA, Carrio I, Hoefnagel CA, et al. High sensitivity of radiolabeled antimyosin scintigraphy in assessing anthracycline related early myocyte damage preceding cardiac dysfunction. Nucl Med Commun 2002; 23(9): 871–7.

    Article  PubMed  CAS  Google Scholar 

  25. Bu’Lock FA, Mott MG, Oakhill A, et al. Early identification of anthracycline cardiomyopathy: possibilities and implications. Arch Dis Child 1996 Nov; 75(5): 416–22.

    Article  PubMed  Google Scholar 

  26. Stoddard MF, Seeger J, Liddell NE, et al. Prolongation of isovolumetric relaxation time as assessed by Doppler echocardiography predicts doxorubicin-induced systolic dysfunction in humans. J Am Coll Cardiol 1992; 20(1): 62–9.

    Article  PubMed  CAS  Google Scholar 

  27. Ocal B, Oguz D, Karademir S, et al. Myocardial performance index combining systolic and diastolic myocardial performance in doxorubicin-treated patients and its correlation to conventional echo/Doppler indices. Pediatr Cardiol 2002; 23(5): 522–7.

    PubMed  CAS  Google Scholar 

  28. Hauser M, Gibson BS, Wilson N. Diagnosis of anthracycline-induced late cardiomyopathy by exercise-spiroergometry and stress-echocardiography. Eur J Pediatr 2001; 160(10): 607–10.

    Article  PubMed  CAS  Google Scholar 

  29. Alexander J, Dainiak N, Berger HJ, et al. Serial assessment of doxorubicin cardiotoxicity with quantitative radionuclide angiography. N Engl J Med 1979; 300: 278–83.

    Article  PubMed  CAS  Google Scholar 

  30. Nousiainen T, Jantunen E, Vanninen E, et al. Early decline in left ventricular ejection fraction predicts doxorubicin cardiotoxicity in lymphoma patients. Br J Cancer 2002; 86(11): 1697–700.

    Article  PubMed  CAS  Google Scholar 

  31. Mitani I, Jain D, Joska TM, et al. Doxorubicin cardiotoxicity: prevention of congestive heart failure with serial cardiac function monitoring with equilibrium radionuclide angiocardiography in the current era. J Nucl Cardiol 2003; 10(2): 132–9.

    Article  PubMed  Google Scholar 

  32. Palmeri ST, Bonow RO, Myers CE, et al. Prospective evaluation of doxorubicin cardiotoxicity by rest and exercise radionuclide angiography. Am J Cardiol 1986; 58: 607–13.

    Article  PubMed  CAS  Google Scholar 

  33. Jensen BV, Skovsgaard T, Nielsen SL. Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol 2002; 13(5): 699–709.

    Article  PubMed  CAS  Google Scholar 

  34. Lipshultz SE, Rifai N, Sallan SE, et al. Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation 1997; 96(8): 2641–8.

    Article  PubMed  CAS  Google Scholar 

  35. Cardinale D, Sandri MT, Martinoni A, et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol 2000; 36(2): 517–22.

    Article  PubMed  CAS  Google Scholar 

  36. Auner HW, Tinchon C, Linkesch W, et al. Prolonged monitoring of troponin T for the detection of anthracycline cardiotoxicity in adults with hematological malignancies. Ann Hematol 2003; 82(4): 218–22.

    PubMed  CAS  Google Scholar 

  37. Okumura H, Iuchi K, Yoshida T, et al. Brain natriuretic peptide as a predictor of anthracycline-induced cardiotoxicity. Acta Haematol 2000; 104(4): 158–63.

    Article  PubMed  CAS  Google Scholar 

  38. Hayakawa H, Komada Y, Hirayama M, et al. Plasma levels of natriuretic peptides in relation to doxorubicin-induced cardiotoxicity and cardiac function in children with cancer. Med Pediatr Oncol 2001; 37(1): 4–9.

    Article  PubMed  CAS  Google Scholar 

  39. Nousiainen T, Vanninen E, Jantunen E, et al. Natriuretic peptides during the development of doxorubicin-induced left ventricular diastolic dysfunction. J Intern Med 2002; 251(3): 228–34.

    Article  PubMed  CAS  Google Scholar 

  40. Jain KK, Casper ES, Geller NL, et al. A prospective randomized comparison of epirubicin and doxorubicin in patients with advanced breast cancer. J Clin Oncol 1985 Jun; 3(6): 818–26.

    PubMed  CAS  Google Scholar 

  41. Bontenbal M, Andersson M, Wildiers J, et al. Doxorubicin vs epirubicin, report of a second-line randomized phase II/III study in advanced breast cancer: EORTC Breast Cancer Cooperative Group. Br J Cancer 1998 Jun; 77(12): 2257–63.

    Article  PubMed  CAS  Google Scholar 

  42. Legha SS, Benjamin RS, Mackay B, et al. Reduction of doxorubicin cardiotoxicity by prolonged continuous infusion. Ann Intern Med 1982; 96(2): 133–9.

    PubMed  CAS  Google Scholar 

  43. Lipshultz SE, Giantris AL, Lipsitz SR, et al. Doxorubicin administration by continuous infusion is not cardioprotective: the Dana-Farber 91–01 Acute Lymphoblastic Leukemia protocol. J Clin Oncol 2002; 20: 1677–82.

    Article  PubMed  CAS  Google Scholar 

  44. Swain SM, Whaley FS, Gerber MC, et al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol 1997; 15(4): 1318–32.

    PubMed  CAS  Google Scholar 

  45. Venturini M, Michelotti A, Del Mastro L, et al. Multicenter randomized controlled clinical trial to evaluate cardioprotection of dexrazoxane versus no cardioprotection in women receiving epirubicin chemotherapy for advanced breast cancer. J Clin Oncol 1996 Dec; 14(12): 3112–20.

    PubMed  CAS  Google Scholar 

  46. Lopez M, Vici P, Di Lauro K, et al. Randomized prospective clinical trial of high-dose epirubicin and dexrazoxane in patients with advanced breast cancer and soft tissue sarcomas. J Clin Oncol 1998 Jan; 16(1): 86–92.

    PubMed  CAS  Google Scholar 

  47. Liu X, Chen Z, Chua CC, et al. Melatonin as an effective protector against doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circ Physiol 2002; 283(1): H254–63.

    PubMed  CAS  Google Scholar 

  48. Chakrabarti KB, Hopewell JW, Wilding D, et al. Modification of doxorubicin-induced cardiotoxicity: effect of essential fatty acids and ICRF-187 (dexrazoxane). Eur J Cancer 2001; 37(11): 1435–42.

    Article  PubMed  CAS  Google Scholar 

  49. Yaris N, Ceviz N, Coskun T, et al. Serum carnitine levels during the doxorubicin therapy: its role in cardiotoxicity. J Exp Clin Cancer Res 2002; 21(2): 165–70.

    PubMed  CAS  Google Scholar 

  50. Shaddy RE, Olsen SL, Bristow MR, et al. Efficacy and safety of metoprolol in the treatment of doxorubicin-induced cardiomyopathy in pediatric patients. Am Heart J 1995; 129(1): 197–9.

    Article  PubMed  CAS  Google Scholar 

  51. Silber JH, Cnaan A, Clark B. Enalapril to prevent cardiac function decline in long-term survivors of pediatric cancer exposed to anthracyclines [abstract 1558]. Proceedings of the 38th ASCO Annual Meeting; 2002 May 18–21; Florida [online]. Available from URL: http://www.asco.org [Accessed 2005 Jun 2].

    Google Scholar 

  52. Brockstein BE, Smiley C, Al-Sadir J, et al. Cardiac and pulmonary toxicity in patients undergoing high-dose chemotherapy for lymphoma and breast cancer: prognostic factors. Bone Marrow Transplant 2000; 25(8): 885–94.

    Article  PubMed  CAS  Google Scholar 

  53. Keefe DL. Trastuzumab-associated cardiotoxicity. Cancer 2002; 95: 1592–600.

    Article  PubMed  CAS  Google Scholar 

  54. Perez EA, Rodeheffer R. Clinical cardiac tolerability of trastuzumab. J Clin Oncol 2004; 22(2): 322–9.

    Article  PubMed  CAS  Google Scholar 

  55. Fuchs IB, Landt S, Beuler H, et al. Analysis of HER2 and HER4 in human myocardium to clarify the cardiotoxicity of trastuzumab (Herceptin). Breast Cancer Res Treat 2003; 82(1): 23–8.

    Article  PubMed  CAS  Google Scholar 

  56. Crone SA, Zhao YY, Fan L, et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 2002; 8: 459–65.

    Article  PubMed  CAS  Google Scholar 

  57. Joensuu H, Alanko T, Bono P, et al. Trastuzumab shows no short-term cardiac toxicity when given concomitantly with single agent vinorelbine or docetaxel as adjuvant treatment for early breast cancer [abstract 74]. Proceedings of the 39th ASCO Annual Meeting; 2003 May 31–Jun 3; Chicago [online]. Available from URL: http://www.asco.org [Accessed 2005 Jun 2].

    Google Scholar 

  58. Ewer MS, Vooletich M, Valero V, et al. Trastuzumab (herceptin) cardiotoxicity: clinical course and cardiac biopsy correlations [abstract 489]. Proceedings of the 38th ASCO Annual Meeting; 2002 May 18–21; Florida [online]. Available from URL: http://www.asco.org [Accessed 2005 Jun 2].

    Google Scholar 

  59. Schwartz CL, Hobbie WL, Truesdell S, et al. Corrected QT interval prolongation in anthracycline-treated survivors of childhood cancer. J Clin Oncol 1993 Oct; 11(10): 1906–10.

    PubMed  CAS  Google Scholar 

  60. Douer D, Tallman MS. Arsenic trioxide: new clinical experience with an old medication in hematologic malignancies. J Clin Oncol 2005 Apr 1; 23(10): 2396–410.

    Article  PubMed  CAS  Google Scholar 

  61. Ohnishi K, Yoshida H, Shigeno K, et al. Arsenic trioxide therapy for relapsed or refractory Japanese patients with acute promyelocytic leukemia: need for careful electrocardiogram monitoring. Leukemia 2002; 16(4): 617–22.

    Article  PubMed  CAS  Google Scholar 

  62. Ohnishi K, Yoshida H, Shigeno K, et al. Prolongation of the QT interval and ventricular tachycardia in patients treated with arsenic trioxide for acute promyelocytic leukaemia. Ann Intern Med 2000; 133(11): 881–5.

    PubMed  CAS  Google Scholar 

  63. Unnikrishnan D, Dutcher JP, Varshneya N, et al. Torsades de pointes in 3 patients with leukaemia treated with arsenic trioxide. Blood 2001; 97(5): 1514–6.

    Article  PubMed  CAS  Google Scholar 

  64. Benedict CR, Arbogast R, Martin L, et al. Single blind study of the effects of intravenous dolasetron mesylate versus ondansetron on electrocardiographic parameters in normal volunteers. J Cardiovasc Pharmacol 1996 Jul; 28(1): 53–9.

    Article  PubMed  CAS  Google Scholar 

  65. Arbuck SG, Strauss H, Rowinsky E, et al. A reassessment of cardiac toxicity associated with taxol. J Natl Cancer Inst Monogr 1993; 15: 117–30.

    PubMed  Google Scholar 

  66. Rowinsky EK, McGuire WP, Guarnieri T, et al. Cardiac disturbances during the administration of taxol. J Clin Oncol 1991 Sep; 9(9): 1704–12.

    PubMed  CAS  Google Scholar 

  67. Saif MW, Szabo E, Grem J, et al. The clinical syndrome of 5-fluorouracil cardiotoxicity [abstract 1613]. 37th Annual Meeting of the American Society of Clinical Oncology; 2001 May 12; 20(pt1): 404.

    Google Scholar 

  68. Sorbette F, Simon I, Bonneterre J, et al. Multicenter prospective study of cardiac accidents during treatments with 5-flurouracil. Therapie 1992 Sep–Oct; 47(5): 371–3.

    PubMed  CAS  Google Scholar 

  69. Tsavari SN, Kosmas C, Vadiaka M, et al. Cardiotoxicity following different doses and schedules of 5-flurouracil administration for malignancy: a survey of 427 patients. Med Sci Monit 2002 Jun; 8(6): 151–7.

    Google Scholar 

  70. Cianci G, Morelli MF, Cannita K, et al. Prophylactic options in patients with 5-fluorouracil-associated cardiotoxicity. Br J Cancer 2003 May; 88(10): 1507–9.

    Article  PubMed  CAS  Google Scholar 

  71. Schober C, Papageorgiou E, Harstrick A, et al. Cardiotoxicity of 5-fluorouracil in combination with folinic acid in patients with gastrointestinal cancer. Cancer 1993 Oct; 72(7): 2242–7.

    Article  PubMed  CAS  Google Scholar 

  72. Anand AJ. Fluorouracil cardiotoxicity. Ann Pharmacother 1994 Mar; 28(3): 374–8.

    PubMed  CAS  Google Scholar 

  73. van Cutsem E, Hoff PM, Blum JL, et al. Incidence of cardiotoxicity with the oral fluoropyrimidine capecitabine is typical of that reported with 5-fluorouracil. Ann Oncol 2002; 13: 484–5.

    Article  PubMed  Google Scholar 

  74. King M, Fernando I. Vascular toxicity associated with cisplatin. Clin Oncol (R Coll Radiol) 2003 Feb; 15(1): 36–7.

    Article  CAS  Google Scholar 

  75. Miyoshi T, Otsuki T, Omine K, et al. Acute promyelocytic leukemia accompanied by retinoic acid syndrome with complications of acute myocardial infarction and cerebral infarction during treatment with all-trans retinoic acid [in Japanese]. Rinsho Ketsueki 2002 Oct; 43(10): 954–9.

    PubMed  Google Scholar 

  76. Zabernigg A, Gattringer C. Myocardial infarction associated with vinorelbine (Navelbine). Eur J Cancer 1996 Aug; 32A(9): 1618–9.

    Article  PubMed  CAS  Google Scholar 

  77. McDonald CC, Alexander FE, Whyte BW, et al. Cardiac and vascular morbidity in women receiving adjuvant tamoxifen for breast cancer in a randomised trial. BMJ 1995 Oct; 311(7011): 977–80.

    Article  PubMed  CAS  Google Scholar 

  78. Deitcher SR, Gomes MP. The risk of venous thromboembolic disease associated with adjuvant hormone therapy for breast carcinoma: a systematic review. Cancer 2004 Aug; 101(3): 439–49.

    Article  PubMed  Google Scholar 

  79. Howell A, Cuzick J, Baum M, et al. Results of the ATAC (Arimidex, Tamoxifen Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 2005 Jan; 365(9453): 60–2.

    Article  PubMed  CAS  Google Scholar 

  80. Yang JC, Haworth L, Sherry RM, et al. A randomized trial of bevacizumab: an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 2003; 349(5): 427–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Kim Teh, Oncology Pharmacy, on behalf of St George Cancer Services for preparation of the anthracycline monitoring policy, and Jane Hagin for assistance with preparation of this article.

The authors have no conflicts of interest to declare.

No sources of funding were used in the preparation of this article.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Youssef, G., Links, M. The Prevention and Management of Cardiovascular Complications of Chemotherapy in Patients with Cancer. Am J Cardiovasc Drugs 5, 233–243 (2005). https://doi.org/10.2165/00129784-200505040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129784-200505040-00003

Keywords

Navigation