Skip to main content
Log in

Comparison of the Effects and Disposition Kinetics of Lidocaine and (±)Prilocaine in Patients Undergoing Axillary Brachial Plexus Block During Day Case Surgery

  • Clinical Pharmacokinetics
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Objective: The aim of this investigation was to compare the clinical effects and pharmacokinetics of lidocaine and prilocaine in two groups of 15 patients undergoing axillary brachial plexus anaesthesia.

Methods: The study had a randomised design. Patients were allocated to one of the two groups of 15. Each group received either lidocaine (600mg = 2.56 mmol/L + 5 mg/L adrenaline) or prilocaine (600mg = 2.72 mmol/L + 5 mg/L adrenaline), injected over a period of 30 seconds. Onset of the surgical analgesia was defined as the period from the end of the injection of the local anaesthetic to the loss of pinprick sensation in the distribution of all three nerves.

Results: The mean onset time of surgical analgesia of both lidocaine and prilocaine was 10 minutes. Lidocaine was biexponentially eliminated with a rapid elimination phase half-life (t½α) of 9.95 ± 14.3 minutes and a terminal elimination phase half-life (t½β) of 2.86 ± 1.55 hours. Lidocaine was metabolised to MEGX (monoethylglycylxylidide); time to reach maximum plasma concentration (tmax) 2.3 ± 0.8 hours; maximum plasma concentration (Cmax) 0.32 ± 0.13 mg/L; t½β 2.4 ± 2.4 hours. Lidocaine total body clearance was 67.8 ± 28.8 L/h. Prilocaine was rapidly and biexponentially eliminated with a t½α of 9.4 ± 18.4 minutes and a t½β of 2.12 ± 1.28 hours. The total body clearance of prilocaine (150 ± 53 L/h) was higher than that of lidocaine (p = 0.0255). Both compounds demonstrated a comparable volume of distribution (Vd), while the volume of distribution at steady-state (Vss) and the volume of distribution in the second compartment (Vβ) values of prilocaine were a factor of 1.6 higher than those of lidocaine (p < 0.001). Both compounds showed a comparable t½α (p > 0.8) and a comparable t½β (p = 0.26).

Conclusion: Following axillary administration, lidocaine and prilocaine demonstrated similar pharmacokinetic behaviour and could therefore be used as the clinical preference for this regional anaesthesia technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bier A. Über einen neuen Weg Lokalanästhesie an den Gliedmaassen zu erzeugen. Archiv Klinische Chirurgie 1908; 86: 1007–16

    Google Scholar 

  2. Hirscheil G. Die anästhessierung des plexus brachialis bei Operationen an der oberen extremität. Munch Med Wochenschr 1911; 58: 1555–6

    Google Scholar 

  3. Pearce H, Lindsay D, Leslie K. Axillary brachial plexus block in two hundred consecutive patients. Anaesth Intensive Care 1996; 24: 453–8

    PubMed  CAS  Google Scholar 

  4. Winnie AP. Perivascular techniques of brachial plexus block. In: Håkannson L, editor. Plexus Anesthesia. Vol. I. Denmark Schultz/Churchill Livingstone, 1984; 121–44

  5. Bartholomew K, Sloan JP. Prilocaine for Bier’s block: how safe is safe? Arch Emerg Med 1990; 7: 189–95

    PubMed  CAS  Google Scholar 

  6. Wildsmith JAW. Prilocaine. An under-utilized local anesthetic. Reg Anesth 1985; 10: 155–9

    CAS  Google Scholar 

  7. Aantaa R, Kirvelä O, Lahdenperä A, et al. Transarterial brachial plexus anesthesia for hand surgery: a retrospective analysis of 346 cases. J Clin Anesth 1994; 6: 289–92

    Article  Google Scholar 

  8. Büttner J, Klose R, Dreesen H. Vergleichende Untersuchung von Prilocain 1% und Mepivacain 1% zur axillären Plexusanaesthesie. Reg Anesth 1987; 10: 70–5

    Google Scholar 

  9. McEllistrem RF, O’Malley K, O’Toole D, et al. Interscalene brachial plexus blockade with lidocaine in chronic renal failure — a pharmacokinetic study. Can J Anaesth 1989; 36: 59–63

    Article  PubMed  CAS  Google Scholar 

  10. Schüle H. Klinisch-experimentelle Untersuchungen über die Verkehrstüchtigkeit nach zahnärztlichen Eingriffen. Dtsch Zahn Zeitung 1980; 35: 183–9

    Google Scholar 

  11. Wörner H, Frank S, Stumpf H. Lokalanästhesie und Verkehrstüchtigkeit. Dtsch Zahn Zeitung 1980; 35: 377–84

    Google Scholar 

  12. Hollmén A. Axillary plexus block. Acta Anaesthesiol Scand 1966; 10Suppl. XXI: 53–6

    Article  Google Scholar 

  13. Lindberg RLP, Pilhlajmaki KK. High-performance liquid Chromatographic determination of bupivacaine in human serum. J Chromatogr 1988; 360: 369–74

    Google Scholar 

  14. Proost JH, Meijer DKW. MW/Pharm, an integrated software package for drug dosage regimen calculation and therapeutic drug monitoring. Comput Biol Med 1992; 22: 155–63

    Article  PubMed  CAS  Google Scholar 

  15. Pitkänen MT, Suzuki N, Rosenberg PH. Intravenous regional anaesthesia with 0.5% prilocaine or 0.5% chloroprocaine. A double blind comparison in volunteers. Anaesthesia 1992; 47: 618–9

    Article  PubMed  Google Scholar 

  16. Borchard U, Niesel HC. Grundlagen der Pharmakologie der Lokalanästhetika. In: Niesel HC, editor. Regionalanästhesie Lokalanästhesie Regionale Schmerztherapie. Stuttgart: Georg Thieme, 1994: 35–68

    Google Scholar 

  17. Niesel HC. Klinische Pharmakologie und Toxikologie. Anwendung der Lokalanästhetika. In: Niesel HC, editor. Regionalanästhesie Lokalanästhesie Regionale Schmerztherapie. Stuttgart: Georg Thieme, 1994: 69–165

    Google Scholar 

  18. Solak M, Akturk G, Erciyes N, et al. The addition of sodium bicarbonate to prilocaine solution during i.v. regional anaesthesia. Acta Anaesth Scand 1991; 35: 572–4

    Article  PubMed  CAS  Google Scholar 

  19. Adams JP, Dealy EJ, Kenmore PI. Intravenous regional anesthesia in hand surgery. J Bone Joint Surg 1964; 46A: 811–6

    Google Scholar 

  20. Eerola R. A comparative study of carticaine and prilocaine in regional intravenous analgesia. Prakt Anaesth 1974; 9: 171–5

    PubMed  CAS  Google Scholar 

  21. Sorbie C, Chacha P. Regional anaesthesia by the intravenous route. BMJ 1965; 1: 957–60

    Article  PubMed  CAS  Google Scholar 

  22. Eriksson E. Prilocaine, an experimental study in man of a new local anaesthetic with special regards to efficacy, toxicity and excretion. Acta Chir Scand Suppl. 1966; 358: 10–24

    Google Scholar 

  23. McCoy EP, Wilson CM. A comparison of lignocaine with prilocaine in axillary brachial plexus anaesthesia. Anaesthesia 1991; 46: 309–11

    Article  PubMed  CAS  Google Scholar 

  24. Hargrove RL, Hoyle JR, Parker JBR, et al. Blood lignocaine levels following intravenous regional analgesia. Anaesthesia 1966; 21: 37–41

    Article  PubMed  CAS  Google Scholar 

  25. Merrifield AJ, Carter SJ. Intravenous regional analgesia: lignocaine blood levels. Anaesthesia 1965; 20: 287–303

    Article  Google Scholar 

  26. Deacock ARC, Simpson WT. Fatal reactions to lignocaine. Anaesthesia 1964; 19: 217–21

    Article  PubMed  CAS  Google Scholar 

  27. Covino BG. Pharmacokinetics of local anaesthetic drugs: In: Prys-Robert C, Hug CG, editors. Pharmacokinetics of anaesthesia. Oxford: Blackwell sci Publishers, 1984: 270–92

    Google Scholar 

  28. Pieper JA, Rodman JH. Lidocaine. In: Evans WE, Schentag JJ, Jusko WJ, Harrison H, editors. Applied pharmacokinetics. Principles of therapeutic monitoring. 2nd ed. Spokane USA; Applied Therapeutics Inc., 1986: 639–81

    Google Scholar 

  29. Arthur GR, Covino BG. Pharmacokinetics of local anaesthetics. In: White PF, editor. Baillière’s Clin Anaesthesiol 1991; Vol 5 (3): 635–58

  30. Hollunger G. On the metabolism of lidocaine. The biotransformation of lidocaine. Acta Pharmacol Toxicol 1960; 17: 365–73

    Article  CAS  Google Scholar 

  31. Boyes RN. A review of the metabolism of amide local anaesthetic agents. Br J Anaesth 1975; 47: 225–30

    PubMed  Google Scholar 

  32. Tam YK, Tawfik SR, Ke J, et al. High-performance liquid chromatography of lidocaine and nine of its metabolites in human plasma and urine. J Chromatogr 1987; 423: 199–206

    Article  PubMed  CAS  Google Scholar 

  33. Tucker GT, Mather LE. Clinical pharmacokinetics of local anaesthetics. Clin Pharmacokinet 1979; 4: 241–78

    Article  PubMed  CAS  Google Scholar 

  34. Simon MAM, Gielen MJM, Vree TB, et al. Disposition of lignocaine for intravenous regional anaesthesia during day-case surgery. Eur J Anaesth 1998; 15: 32–7

    CAS  Google Scholar 

  35. Akerman B, Aström A, Ross S, et al. Studies on absorption, distribution and metabolism of labelled prilocaine and lidocaine in some animals. Acta Pharmacol Toxicol 1966; 24: 389–403

    Article  CAS  Google Scholar 

  36. Geddes IC. Studies of the metabolism of Citanest C14. Acta Aaesth Scand 1965; 2Suppl. XVI: 37–44

    Article  Google Scholar 

  37. Helm M, Holmdahl MH. Biochemical effects of aromatic amines. Cyanosis, methaemoglobinaemia, Heinz-body formation induced by a local anaesthetic agent (prilocaine). Acta Anaesth Scand 1965; 2: 99–120

    Article  Google Scholar 

  38. Tucker GT, Mather LE, Lennard MS, et al. Plasma concentrations of the stereoisomers of prilocaine after administration of the racemate; implications for toxicity? Br J Anaesth 1990; 65: 333–6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom B. Vree.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, M.A.M., Vree, T.B., Gielen, M.J.M. et al. Comparison of the Effects and Disposition Kinetics of Lidocaine and (±)Prilocaine in Patients Undergoing Axillary Brachial Plexus Block During Day Case Surgery. Clin. Drug Investig. 16, 241–250 (1998). https://doi.org/10.2165/00044011-199816030-00008

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00044011-199816030-00008

Keywords

Navigation