Skip to main content
Log in

Estrogen Replacement Therapy for the Prevention and Treatment of Alzheimer’s Disease

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Summary

Alzheimer’s disease is characterised by the gradual but progressive loss of memory and other cognitive abilities. Pathological features include the accumulation of neurofibrillary tangles, neuritic plaques and β-amyloid protein within vulnerable regions of the brain. A number of actions of estrogen have the potential to affect brain function and influence the pathology of Alzheimer’s disease.

Early-onset Alzheimer’s disease is a relatively infrequent disorder which is usually inherited in an autosomal dominant manner. However, for late-onset illness, it is likely that several genetic and environmental factors are pathogenetically important.

A number of epidemiological studies link postmenopausal hormonal replacement therapy to a reduced risk of developing Alzheimer’s disease. Estrogen can affect cognition and mood, and a number of generally small intervention trials suggest that estrogen improves cognitive skills among women with Alzheimer’s disease. However, most treatment studies have not been conducted in a methodologically rigorous fashion. There are no firm data on different estrogen preparations and dosages or on the role of progestins in the prevention and treatment of Alzheimer’s disease in women, and no data support the use of estrogen for this disorder in men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jorm AF, Korten AE, Henderson AS. The prevalence of dementia: a quantitative integration of the literature. Acta Psychiatr Scand 1987; 76: 465–79

    Article  PubMed  CAS  Google Scholar 

  2. Pericak-Vance MA, Haines JL. Genetic susceptibility to Alzheimer disease. Trends Genet 1995; 11: 504–8

    Article  PubMed  CAS  Google Scholar 

  3. Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 1993; 90: 1977–81

    Article  PubMed  CAS  Google Scholar 

  4. Seshadri S, Drachman DA, Lippa CF. Apolipoprotein E ε4 allele and the lifetime risk of Alzheimer’s disease. Arch Neurol 1995; 52: 1074–9

    Article  PubMed  CAS  Google Scholar 

  5. Evans DA, Beckett LA, Field TS, et al. Apolipoprotein E ε4 and incidence of Alzheimer disease in a community population of older persons. JAMA 1997; 277: 822–4

    Article  PubMed  CAS  Google Scholar 

  6. Nee LE, Eldridge R, Sunderland T, et al. Dementia of the Alzheimer type: clinical and family study of 22 twin pairs. Neurology 1987; 37: 359–63

    Article  PubMed  CAS  Google Scholar 

  7. van Duijn CM, Hofman A. Risk factors for Alzheimer’s disease: the URODEM collaborative re-analysis of case-control studies. Neuroepidemiology 1992; 11 Suppl. 1: 106–13

    Article  PubMed  Google Scholar 

  8. Breteler MMB, Claus JJ, van Duijn CM, et al. Epidemiology of Alzheimer’s disease. Epidemiol Rev 1992; 14: 59–82

    PubMed  CAS  Google Scholar 

  9. Graves AB, Kukull WA. The epidemiology of dementia. In: Morris JC, editor. Handbook of dementing illnesses. New York: Marcel Dekker, 1994: 23–69

    Google Scholar 

  10. Henderson VW, Kukull WA, Buckwalter JG, et al. Left-handedness and the risk of Alzheimer’s disease [abstract]. Soc Neurosci Abstr 1996; 22: 15

    Google Scholar 

  11. Rich JB, Rasmusson DX, Folstein MF, et al. Nonsteroidal antiinflammatory drugs in Alzheimer’s disease. Neurology 1995; 45: 51–5

    Article  PubMed  CAS  Google Scholar 

  12. Jeandel C, Nicolas MB, Dubois F, et al. Lipid peroxidation and free radical scavengers in Alzheimer’s disease. Gerontology 1989; 35: 275–82

    Article  PubMed  CAS  Google Scholar 

  13. Burger HG. The endocrinology of the menopause. Maturitas 1996; 23: 129–36

    Article  PubMed  CAS  Google Scholar 

  14. Miranda RC, Sohrabji F, Toran-Allerand CD. Presumptive estrogen target neurons express mRNAs for both the neurorophins and neurotrophin receptors: a basis for potential developmental interactions of estrogen with neurotrophins. Mol Cell Neurosci 1993; 4: 510–25

    Article  PubMed  CAS  Google Scholar 

  15. Shughrue PJ, Dorsa DM. Estrogen modulates the growth-associated protein GAP-43 (neuromodulin) mRNA in the rat preoptic area and basal hypothalamus. Neuroendocrinology 1993; 57: 439–47

    Article  PubMed  CAS  Google Scholar 

  16. Chung SK, Pfaff DW, Cohen RS. Estrogen-induced alterations in synaptic morphology in the midbrain central gray. Exp Brain Res 1988; 69: 522–30

    Article  PubMed  CAS  Google Scholar 

  17. Toran-Allerand CD. Organotypic culture of the developing cerebral cortex and hypothalamus: relevance to sexual differentiation. Psychoneuroendocrinology 1991; 16: 7–24

    Article  PubMed  CAS  Google Scholar 

  18. Woolley CS, McEwen BS. Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat. J Comp Neurol 1993; 336: 293–306

    Article  PubMed  CAS  Google Scholar 

  19. Lustig RH. Sex hormone modulation of neural development in vitro. Horm Behav 1994; 28: 383–95

    Article  PubMed  CAS  Google Scholar 

  20. Keefe D, Garcia-Segura M, Naftolin F. New insights into estrogen action on the brain. Neurobiol Aging 1994; 15: 495–7

    Article  PubMed  CAS  Google Scholar 

  21. Sar M, Stumpf WE. Central noradrenergic neurones concentrate 3H-oestradiol. Nature 1981; 289: 500–2

    Article  PubMed  CAS  Google Scholar 

  22. Toran-Allerand CD, Miranda RC, Bentham WDL, et al. Estrogen receptors colocalize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forebrain. Proc Natl Acad Sci USA 1992; 89: 4668–72

    Article  PubMed  CAS  Google Scholar 

  23. Luine V. Estradiol increases choline acetyltransferase activity in specific basal forebrain nuclei and projection areas of female rats. Exp Neurol 1985; 89: 484–90

    Article  PubMed  CAS  Google Scholar 

  24. Gibbs RB, Pfaff DW. Effects of estrogen and fimbria/fornix transection on p75NGFR and ChAT expression in the medial septum and diagonal band of Broca. Exp Neurol 1992; 116: 23–39

    Article  PubMed  CAS  Google Scholar 

  25. Jaffe AB, Toran-Allerand CD, Greengard P, et al. Estrogen regulates metabolism of Alzheimer amyloid β precursor protein. J Biol Chem 1994; 269: 13065–8

    PubMed  CAS  Google Scholar 

  26. Niki E, Nakano M. Estrogens as antioxidants. Methods Enzymol 1990; 186: 330–3

    Article  PubMed  CAS  Google Scholar 

  27. Behl C, Davis JB, Lesley R, et al. Hydrogen peroxide mediates amyloid β protein toxicity. Cell 1994; 77: 817–27

    Article  PubMed  CAS  Google Scholar 

  28. Sagara Y, Dargusch R, Klier FG, et al. Increased antioxidant enzyme activity in amyloid β protein-resistant cells. J Neurosci 1996; 16: 497–505

    PubMed  CAS  Google Scholar 

  29. Applebaum-Bowden D, McLean P, Steinmetz A, et al. Lipoprotein, apolipoprotein, and lipolytic enzyme changes following estrogen administration in postmenopausal women. J Lipid Res 1989; 30: 1895–906

    PubMed  CAS  Google Scholar 

  30. Muesing RA, Miller VT, LaRosa JC, et al. Effects of unopposed conjugated equine estrogen on lipoprotein composition and apolipoprotein-E distribution. J Clin Endocrinol Metab 1992; 75: 1250–4

    Article  PubMed  CAS  Google Scholar 

  31. Bauer J, Ganter U, Strauss S, et al. The participation of interleukin-6 in the pathogenesis of Alzheimer’s disease. Res Immunol 1992; 143: 650–7

    Article  PubMed  CAS  Google Scholar 

  32. McGeer PL, McGeer EG. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Rev 1995; 21: 195–218

    Article  PubMed  CAS  Google Scholar 

  33. Horowitz MC. Cytokines and estrogen in bone: anti-osteoporotic effects. Science 1993; 260: 626–7

    Article  PubMed  CAS  Google Scholar 

  34. Lindheim SR, Legro RS, Bernstein L, et al. Behavioral stress responses in premenopausal and postmenopausal women and the effects of estrogen. Am J Obstet Gynecol 1992; 167: 1831–6

    PubMed  CAS  Google Scholar 

  35. Beifort MA, Saade GR, Snabes M, et al. Hormonal status affects the reactivity of the cerebral vasculature. Am J Obstet Gynecol 1995; 172: 1273–8

    Article  Google Scholar 

  36. Ohkura T, Matsuda H, Iwasaki N, et al. Effect of estrogen on regional cerebral blood flow in postmenopausal women. J Jpn Menopause Soc 1996; 4: 254–61

    Google Scholar 

  37. Bishop J, Simpkins JW. Role of estrogens in peripheral and cerebral glucose utilization. Rev Neurosci 1992; 3: 121–37

    Article  PubMed  CAS  Google Scholar 

  38. Becker JB, Snyder PJ, Miller MM, et al. The influence of estrous cycle and intrastriatal estradiol on sensorimotor performance in the female rat. Pharmacol Biochem Behav 1987; 27: 53–9

    Article  PubMed  CAS  Google Scholar 

  39. Singh M, Meyer EM, Millard WJ, et al. Ovarian steroid deprivation results in a reversible learning impairment and compromised cholinergic function in female Sprague-Dawley rats. Brain Res 1994; 644: 305–12

    Article  PubMed  CAS  Google Scholar 

  40. Hampson E. Variations in sex-related cognitive abilities across the menstrual cycle. Brain Cogn 1990; 14: 26–43

    Article  PubMed  CAS  Google Scholar 

  41. Phillips SM, Sherwin BB. Variations in memory function and sex steroid hormones across the menstrual cycle. Psychoneuroendocrinology 1992; 17: 497–506

    Article  PubMed  CAS  Google Scholar 

  42. Krug R, Stamm U, Pietrowsky R, et al. Effects of menstrual cycle on creativity. Psychoneuroendocrinology 1994; 19: 21–31

    Article  PubMed  CAS  Google Scholar 

  43. Kampen DL, Sherwin BB. Estrogen use and verbal memory in healthy postmenopausal women. Obstet Gynecol 1994; 83: 979–83

    Article  PubMed  CAS  Google Scholar 

  44. Robinson D, Friedman L, Marcus R, et al. Estrogen replacement therapy and memory in older women. J Am Geriatr Soc 1994; 42: 919–22

    PubMed  CAS  Google Scholar 

  45. Phillips SM, Sherwin BB. Effects of estrogen on memory function in surgically menopausal women. Psychoneuroendocrinology 1992; 17: 485–95

    Article  PubMed  CAS  Google Scholar 

  46. Sherwin BB, Tulandi T. ‘Add-back’ estrogen reverses cognitive deficits induced by a gonadotropin-releasing hormone agonist in women with leiomyomata uteri. J Clin Endocrinol Metab 1996; 81: 2545–9

    Article  PubMed  CAS  Google Scholar 

  47. Newton C, Slota D, Yuzpe AA, et al. Memory complaints associated with the use of gonadotropin-releasing hormone agonists: a preliminary study. Fertil Steril 1996; 65: 1253–5

    PubMed  CAS  Google Scholar 

  48. Van Goozen SHM, Cohen-Kettenis PT, Gooren LJG, et al. Gender differences in behaviour: activating effects of cross-sex hormones. Psychoneuroendocrinology 1995; 20: 343–63

    Article  PubMed  Google Scholar 

  49. Schneider MA, Brotherton PL, Hailes J. The effect of exogenous oestrogens on depression in menopausal women. Med J Australia 1977; 2: 162–3

    PubMed  CAS  Google Scholar 

  50. Sherwin BB. Affective changes with estrogen and androgen replacement therapy in surgically menopausal women. J Affect Disord 1988; 14: 177–87

    Article  PubMed  CAS  Google Scholar 

  51. Ditkoff EC, Crary WG, Cristo M, et al. Estrogen improves psychological function in asymptomatic postmenopausal women. Obstet Gynecol 1991; 78: 991–5

    PubMed  CAS  Google Scholar 

  52. Best NR, Rees MP, Barlow DH, et al. Effect of estradiol implant on noradrenergic function and mood in menopausal subjects. Psychoneuroendocrinology 1992; 17: 87–93

    Article  PubMed  CAS  Google Scholar 

  53. Greengrass PM, Tonge SR. The accumulation of noradrenaline and 5-hydroxytryptamine in three regions of mouse brain after tetrabenazine and iproniazid: effects of ethinyloestradiol and progesterone. Psychopharmacologia 1974; 39: 187–91

    Article  PubMed  CAS  Google Scholar 

  54. Ball P, Knuppen R, Haupt M, et al. Interactions between estrogens and catechol amines. III. Studies on the methylation of catechol estrogens, catechol amines and other catechols by the catechol-O-methyltransferases of human liver. J Clin Endocrinol Metab 1972; 34: 736–46

    Article  PubMed  CAS  Google Scholar 

  55. Cohen IR, Wise PM. Effects of estradiol on the diurnal rhythm of serotonin activity in microdissected brain areas of ovariectomized rats. Endocrinology 1988; 122: 2619–25

    Article  PubMed  CAS  Google Scholar 

  56. Henderson VW, Paganini-Hill A, Emanuel CK, et al. Estrogen replacement therapy in older women: comparisons between Alzheimer’s disease cases and nondemented control subjects. Arch Neurol 1994; 51: 896–900

    Article  PubMed  CAS  Google Scholar 

  57. Mortel KF, Meyer JS. Lack of postmenopausal estrogen replacement therapy and the risk of dementia. J Neuropsychiatr Clin Neurosci 1995; 7: 334–7

    CAS  Google Scholar 

  58. Lerner A, Cole R, Debanne S, et al. Immunological and endocrine conditions in an Alzheimer’s disease case-control study [abstract]. Neuroepidemiology 1995; 14: 307

    Google Scholar 

  59. Birge SJ. The role of estrogen deficiency in the aging central nervous system. In: Lobo RA, editor. Treatment of the postmenopausal woman: basic and clinical aspects. New York: Raven Press, 1994: 153–7

    Google Scholar 

  60. Baldereschi M, Di Carol A, Maggi S, et al. Estrogen replacement therapy and the risk of dementia in the Italian longitudinal study on aging [abstract]. Eur J Neurol 1996; 3 Suppl. 5: 85–6

    Google Scholar 

  61. Paganini-Hill A, Henderson VW. Estrogen deficiency and risk of Alzheimer’s disease in women. Am J Epidemiol 1994; 140: 256–61

    PubMed  CAS  Google Scholar 

  62. Brenner DE, Kukull WA, Stergachis A, et al. Postmenopausal estrogen replacement therapy and the risk of Alzheimer’s disease: a population-based case-control study. Am J Epidemiol 1994; 140: 262–7

    PubMed  CAS  Google Scholar 

  63. Tang M-X, Jacobs D, Stern Y, et al. Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 1996; 348: 429–32

    Article  PubMed  CAS  Google Scholar 

  64. Morrison A, Resnick S, Corrada M, et al. A prospective study of estrogen replacement therapy and the risk of developing Alzheimer’s disease in the Baltimore longitudinal study of aging [abstract]. Neurology 1996; 46 Suppl. 2: A435–6

    Google Scholar 

  65. Waring SC, Rocca WA, Petersen RC, et al. Postmenopausal estrogen replacement therapy and Alzheimer’s disease: a population-based study in Rochester, Minnesota [abstract]. Neurology 1997; 48 Suppl. 2: A79

    Google Scholar 

  66. Paganini-Hill A, Henderson VW. Estrogen replacement therapy and risk of Alzheimer’s disease. Arch Intern Med 1996; 156: 2213–7

    Article  PubMed  CAS  Google Scholar 

  67. Henderson VW, Watt L, Buckwalter JG. Cognitive skills associated with estrogen replacement in women with Alzheimer’s disease. Psychoneuroendocrinology 1996; 21: 421–30

    Article  PubMed  CAS  Google Scholar 

  68. Henderson VW, Buckwalter JG. Cognitive deficits of men and women with Alzheimer’s disease. Neurology 1994; 44: 90–6

    Article  PubMed  CAS  Google Scholar 

  69. Ripich DN, Petrill SA, Whitehouse PJ, et al. Gender differences in language of AD patients: a longitudinal study. Neurology 1995; 45: 299–302

    Article  PubMed  CAS  Google Scholar 

  70. Fillit H, Weinreb H, Cholst I, et al. Observations in a preliminary open trial of estradiol therapy for senile dementia, Alzheimer’s type. Psychoneuroendocrinology 1986; 11: 337–45

    Article  PubMed  CAS  Google Scholar 

  71. Honjo H, Ogino Y, Naitoh K, et al. In vivo effects of estrone sulfate on the central nervous system: senile dementia (Alzheimer’s type). J Steroid Biochem 1989; 34: 521–5

    Article  PubMed  CAS  Google Scholar 

  72. Honjo H, Ogino Y, Tanaka K, et al. An effect of conjugated estrogen on cognitive impairment in women with senile dementia: Alzheimer’s type: a placebo-controlled, double-blind study. J Japan Menopause Soc 1993; 1: 167–71

    Google Scholar 

  73. Ohkura T, Isse K, Akazawa K, et al. An open trial of estrogen therapy for dementia of the Alzheimer type in women. In: Berg G, Hammar M, editors. The modern management of the menopause: a perspective for the 21st century. Carnforth: Parthenon, 1994: 315–33

    Google Scholar 

  74. Ohkura T, Isse K, Akazawa K, et al. Evaluation of estrogen treatment in female patients with dementia of the Alzheimer type. Endocrine J 1994; 41: 361–71

    Article  CAS  Google Scholar 

  75. Ohkura T, Isse K, Akazawa K, et al. Low-dose estrogen replacement therapy for Alzheimer disease in women. Menopause 1994; 1: 125–30

    Google Scholar 

  76. Fillit H. Estrogens in the pathogenesis and treatment of Alzheimer’s disease in postmenopausal women. Ann N Y Acad Sci 1994; 743: 233–8

    Article  PubMed  CAS  Google Scholar 

  77. Ohkura T, Isse K, Akazawa K, et al. Long-term estrogen replacement therapy in female patients with dementia of the Alzheimer type: 7 case reports. Dementia 1995; 6: 99–107

    PubMed  CAS  Google Scholar 

  78. Birge SJ. The role of estrogen in the treatment of Alzheimer’s disease. Neurology 1997; 48 Suppl. 7: S36–41

    Article  PubMed  CAS  Google Scholar 

  79. Asthana S, Craft S, Baker LD, et al. Transdermal estrogen improves memory in women with Alzheimer’s disease [abstract]. Soc Neurosci Abstr 1996; 22: 200

    Google Scholar 

  80. Henderson VW. Oestrogen replacement therapy and Alzheimer’s disease. In: Whitehead M, editor. The prescriber’s guide to hormone replacement therapy. New York: Parthenon. In press

  81. Bartus RT, Dean RL, Beer B, et al. The cholinergic hypothesis of geriatric memory dysfunction. Science 1981; 217: 208–17

    Google Scholar 

  82. Coyle JT, Price DL, DeLong MR. Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 1983; 219: 1184–90

    Article  PubMed  CAS  Google Scholar 

  83. Schneider LS, Farlow MR, Henderson VW, et al. Effects of estrogen replacement therapy on response to tacrine in patients with Alzheimer’s disease. Neurology 1996; 46: 1580–4

    Article  PubMed  CAS  Google Scholar 

  84. Kushwaha RS, Foster DM, Barrett PHR, et al. Metabolic regulation of plasma apolipoprotein E by estrogen and progesterone in the baboon (Papio sp). Metabolism 1991; 40: 93–100

    Article  PubMed  CAS  Google Scholar 

  85. Stampfer MJ, Colditz GA. Estrogen replacement and coronary heart disease: a quantitative assessment of the epidemiologic evidence. Prevent Med 1991; 20: 47–63

    Article  CAS  Google Scholar 

  86. Ettinger B, Friedman GD, Bush T, et al. Reduced mortality associated with long-term postmenopausal estrogen therapy. Obstet Gynecol 1996; 87: 6–12

    Article  PubMed  CAS  Google Scholar 

  87. Folsom AR, Mink PJ, Sellers TA, et al. Hormonal replacement therapy and morbidity and mortality in a prospective study of postmenopausal women. Am J Public Health 1995; 85: 1128–32

    Article  PubMed  CAS  Google Scholar 

  88. Barzel US. Estrogens in the prevention and treatment of postmenopausal osteoporosis: a review. Am J Med 1988; 85: 847–50

    Article  PubMed  CAS  Google Scholar 

  89. Belchetz PE. Hormonal treatment of postmenopausal women. N Engl J Med 1994; 330: 1062–71

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor W. Henderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henderson, V.W. Estrogen Replacement Therapy for the Prevention and Treatment of Alzheimer’s Disease. CNS Drugs 8, 343–351 (1997). https://doi.org/10.2165/00023210-199708050-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199708050-00001

Keywords

Navigation