Skip to main content
Log in

Hormonal and Plasma Volume Alterations Following Endurance Exercise

A Brief Review

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Plasma volume expansion usually occurs with acute endurance exercise and endurance training both in humans and in animals. In most cases, the increase in plasma volume is associated with lower haematocrit without red cell mass change or an actual reduction in red cell mass, causing relative or true anaemia, respectively. The combination of exercise and heat acclimation (which produces also hypervolaemia, but at a lesser degree than exercise) enhances hypervolaemia induced by exercise training alone. The onset of the phenomenon is extremely rapid: hypervolaemia is observed within minutes or hours of the cessation of exercise. However, 2 days are necessary to reach peak plasma volume expansion after a marathon run or longer race. The magnitude of this natural expansion ranges from 9 to 25%, corresponding to an additional 300 to 700ml of plasma. The magnitude of this alteration depends on preceding exercise: ambient conditions, intensity and duration of exercise, body posture and frequency of the exercise bouts. The larger the reduction in plasma volume during exercise, the greater the subsequent hypervolaemia. The hydration status of the subjects before and during exercise might modify also plasma volume changes: sufficient fluid ingestion can lead to plasma volume expansion even during prolonged exercise.

Fluid-regulating hormones (aldosterone, arginine vasopressin and atrial natriuretic factor) in conjunction with an elevation in plasma protein content promote hypervolaemia. However, the role and the mechanism of the increase in protein mass remain unclear and the hormonal role in the induction of chronic hypervolaemia is still an open question.

Hypervolaemia can improve performance by inducing better muscle perfusion, and by increasing stroke volume and maximal cardiac output. By increasing skin blood flow, plasma volume expansion also enhances thermoregulatory responses to exercise. This leads to the important concept of optimal plasma volume and haematocrit, and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åstrand PO, Saltin B. Plasma and red cell volume after prolonged severe exercise. Journal of Applied Physiology 19: 829–832, 1964

    PubMed  Google Scholar 

  • Bass DE, Kleeman CR, Quinn M, Henschel A, Hegnauer AH. Mechanisms of acclimatization to heat in man. Medicine 34: 323–380, 1955

    Article  PubMed  CAS  Google Scholar 

  • Bass DE, Buskirk ER, Iampietro PF, Mager M. Comparison of blood volume during physical conditioning, heat acclimati-zation, and sedentary living. Journal of Applied Physiology 12: 186–188, 1958

    PubMed  CAS  Google Scholar 

  • Boning D, Skipka W, Heedt P, Tibes U. Effects and post-effects of two-hour exhausting exercise on composition and gas transport functions of blood. European Journal of Applied Physiology 42: 117–123, 1979

    Article  CAS  Google Scholar 

  • Brandenberger G, Candas V, Follenius M, Libert JP, Kahn JM. Vascular fluid shifts and endocrine responses to exercise in the heat. European Journal of Applied Physiology 55: 123–129, 1986

    Article  CAS  Google Scholar 

  • Candas V, Libert JP, Brandenberger G, Sagot JC, Amoros C, et al. Hydration during exercise. European Journal of Applied Physiology 55: 113–122, 1986

    Article  CAS  Google Scholar 

  • Claybaugh JR, Pendergast DR, Davis JE, Akiba C, Pazik M, et al. Fluid conservation in athletes: responses to water intake, supine posture, and immersion. Journal of Applied Physiology 61: 7–15, 1986

    PubMed  CAS  Google Scholar 

  • Convertino VA. Heart rate and sweat rate responses associated with exercise-induced hypervolemia. Medicine and Science in Sports and Exercise 15: 77–82, 1983a

    PubMed  CAS  Google Scholar 

  • Convertino VA, Brock PJ, Keil LC, Bernauer EM, Greenleaf JE. Exercise training-induced hypervolemia: role of plasma albumin, renin, and vasopressin. Journal of Applied Physiology 48: 665–669, 1980b

    PubMed  CAS  Google Scholar 

  • Convertino VA, Greenleaf JE, Bernauer EM. Role of thermal and exercise factors in the mechanism of hypervolemia. Journal of Applied Physiology 48: 657–664, 1980a

    PubMed  CAS  Google Scholar 

  • Convertino VA, Keil LC, Greenleaf JE. Plasma volume, renin, and vasopressin responses to graded exercise after training. Journal of Applied Physiology 54: 508–514, 1983b

    PubMed  CAS  Google Scholar 

  • Costill DL, Branam G, Finck W, Nelson R. Exercise-induced sodium conservation: changes in plasma renin and aldosterone. Medicine and Science in Sports 8: 209–213, 1976

    PubMed  CAS  Google Scholar 

  • Coyle EF, Hemmert MK, Coggan AR. Effects of detraining on cardiovascular: responses to exercise: role of blood volume. Journal of Applied Physiology 60: 95–99, 1986

    Article  PubMed  CAS  Google Scholar 

  • Coyle EF, Hopper MK, Coggan AR. Maximal oxygen uptake relative to plasma volume expansion. International Journal of Sports Medicine 11: 116–119, 1990

    Article  PubMed  CAS  Google Scholar 

  • Crowell JW, Smith EE. Determinant of the optimal hematocrit. Journal of Applied Physiology 22: 501–504, 1967

    PubMed  CAS  Google Scholar 

  • Deschamps A, Levy RD, Cosio MG, Marliss EB, Magder S. Effect of saline infusion on body temperature and endurance during heavy exercise. Journal of Applied Physiology 66: 2799–2804, 1989

    PubMed  CAS  Google Scholar 

  • Diaz FJ, Bransford DR, Kobayashi K, Horvath SM, McMurray RG. Plasma volume changes during rest and exercise in different postures in a hot humid environment. Journal of Applied Physiology 47: 798–803, 1979

    PubMed  CAS  Google Scholar 

  • Dill DB, Hall FG, Hall KD, Dawson C, Newton JL. Blood plasma, and red cell volumes: age, exercise, and environment. Journal of Applied Physiology 21: 597–602, 1966

    PubMed  CAS  Google Scholar 

  • Dressendorfer RH, Wade CE, Amsterdam EA. Development of pseudoanemia in marathon runners during a 20-day road race. Journal of the American Medical Association 246: 1215–1218, 1981

    Article  PubMed  CAS  Google Scholar 

  • Espiner EA, Nicholls MG, Vandlet G, Crozier IA, Cuneo RC, et al. Studies on the secretion, metabolism and action of atrial natriuretic peptide in man. Journal of Hypertension 4 (Suppl. 2): S85–S91, 1986

    PubMed  CAS  Google Scholar 

  • Fellmann N, Bedu M, Giry J, Pharmakis-Amadieu M, Bezou MJ, et al. Hormonal, fluid and electrolyte changes during a 72-h recovery from a 24-h endurance run. International Journal of Sports Medicine 10: 406–412, 1989

    Article  PubMed  CAS  Google Scholar 

  • Fortney SM, Nadel ER, Wenger CB, Bove JR. Effect of acute alterations of blood volume on circulatory performance. Journal of Applied Physiology 50: 292–298, 1981a

    PubMed  CAS  Google Scholar 

  • Fortney SM, Nadel ER, Wenger CB, Bove JR. Effect of blood volume on sweating rate and body fluids in exercising humans. Journal of Applied Physiology 51: 1594–1600, 1981b

    PubMed  CAS  Google Scholar 

  • Fortney SM, Senay LC. Effect of training and heat acclimation on exercise responses of sedentary females. Journal of Applied Physiology 47: 976–984, 1979

    Google Scholar 

  • Fortney SM, Vroman NB, Beckett WS, Permutt S, La France ND. Effect of exercise hemoconcentration and hyperosmolality on exercise responses. Journal of Applied Physiology 65: 519–524, 1988

    PubMed  CAS  Google Scholar 

  • Fortney SM, Wenger CB, Bove JR, Nadel ER. Effect of blood volume on forearm venous and cardiac stroke volume during exercise. Journal of Applied Physiology 55: 884–890, 1983

    PubMed  CAS  Google Scholar 

  • Francesconi R, Mager M. Acute heat exercise stress in rats: effects on fluid and electrolyte regulatory hormones. Experientia 39: 581–583, 1983

    Article  PubMed  CAS  Google Scholar 

  • Francesconi R, Bosselaers M, Matthew C, Hubbard RW. Plasma volume expansion in rats: effects of thermoregulation and exercise. Journal of Applied Physiology 66: 1749–1755, 1989

    PubMed  CAS  Google Scholar 

  • Freund B, Claybaugh J, Dice M, Hashiro G. Hormonal and vascular fluid responses to maximal exercise in trained and untrained males. Journal of Applied Physiology 63: 669–675, 1987

    PubMed  CAS  Google Scholar 

  • Freund B, Wade CE, Claybaugh J. Effects of exercise on atrial natriuretic factor release: mechanisms and implications for fluid homeostasis. Sports Medicine 6: 364–376, 1988

    Article  PubMed  CAS  Google Scholar 

  • Gass GC, Camp EM, Watson J, Eager D, Wicks L, et al. Pro-longed exercise in highly trained female endurance runners. International Journal of Sports Medicine 4: 241–246, 1983

    Article  PubMed  CAS  Google Scholar 

  • Green HJ, Jones LL, Houston ME, Ball-Burnett ME, Farrance BW. Muscle energetics during prolonged cycling after exercise hypervolemia. Journal of Applied Physiology 66: 622–631, 1989

    PubMed  CAS  Google Scholar 

  • Green HJ, Thomson JA, Ball ME, Hughson RL, Houston ME, et al. Alterations in blood volume following short-term supra-maximal exercise. Journal of Applied Physiology 56: 145–149, 1984

    PubMed  CAS  Google Scholar 

  • Green HJ, Jones LJ, Hughson RL, Painter DC, Farrance BW. Training-induced hypervolemia: lack of an effect on oxygen utilization during exercise. Medicine and Science in Sports and Exercise 19: 202–206, 1987a

    Article  PubMed  CAS  Google Scholar 

  • Green HJ, Sutton JR, Coates G, Ali M, Jones S. Response of red cell and plasma volume to prolonged training in humans. Journal of Applied Physiology 70: 1810–1815, 1991

    PubMed  CAS  Google Scholar 

  • Green HJ, Thomson JA, Houston ME. Supramaximal exercise after training-induced hypervolemia. II. Blood muscle substrates and metabolites. Journal of Applied Physiology 62: 1954–1961, 1987b

    PubMed  CAS  Google Scholar 

  • Greenleaf JE, Bernauer EM, Young HL, Morse JT, Staley RW, et al. Fluid and electrolyte shifts during bed rest with isometric and isotonic exercise. Journal of Applied Physiology 42: 5966, 1977

    Google Scholar 

  • Greenleaf JE, Castle BL. Exercise temperature regulation in man during hypohydration and hyperhydration. Journal of Applied Physiology 30: 847–853, 1971

    PubMed  CAS  Google Scholar 

  • Greenleaf JE, Convertino VA, Mangseth GR. Plasma volume during stress in man: osmolality and red cell volume. Journal of Applied Physiology 47: 1031–1038, 1979

    PubMed  CAS  Google Scholar 

  • Greenleaf JE, Hinghofer-Szalkay H. Plasma volume methodol-ogy: Evans Blue, hemoglobin-hematocrit, and mass density transformations. NASA Technical Memorandum 86834, Moffett Field, California, 1985

    Google Scholar 

  • Greenleaf JE, Sciaraffa D, Shvartz E, Keil C, Brock PJ. Exercise training hypotension: implications for plasma volume, renin and vasopressin. Journal of Applied Physiology 51: 298–305, 1981

    PubMed  CAS  Google Scholar 

  • Guyton AC, Taylor AE, Granger HG. In Taylor AE (Ed.) Circulating physiology II: dynamics and control of the body fluids, pp. 125–140, Saunders, Philadelphia, PA, 1975

  • Harrison MH. Effects of thermal stress and exercise on blood volume in humans. Physiological Reviews 65: 149–209, 1985

    PubMed  CAS  Google Scholar 

  • Harrison MH, Graveney MJ, Cochrane L. Some sources of error in the calculation of relative change in plasma volume. European Journal of Physiology 50: 13–21, 1982

    Article  Google Scholar 

  • Hespel P, Lijnen P, Van Hoof R, Fagard R, Goossens W, et al. Effects of physical endurance training on plasma renin-angiotensin aldosterone system in normal men. Journal of Endocrinology 116: 443–449, 1988

    Article  PubMed  CAS  Google Scholar 

  • Hill DW, Hill JS, Grisham SC, Zauner CW. Plasma volume response to exercise on five consecutive days. Journal of Sports Medicine 27: 6–10, 1987

    CAS  Google Scholar 

  • Hopper MK, Coggan AR, Coyle EF. Exercise stroke volume relative to plasma-volume expansion. Journal of Applied Physiology 64: 404–408, 1988

    PubMed  CAS  Google Scholar 

  • Irving RA, Noakes TD, Irving GA, Van Zyl-Smit R. The im-mediate and delayed effects of marathon running on renal function. Journal of Urology 136: 1176–1180, 1986

    PubMed  CAS  Google Scholar 

  • Kanstrup IL, Ekblom B. Acute hypervolemia, cardiac performance,. and aerobic power during exercise. Journal of Applied Physiology 52: 1186–1191, 1982

    PubMed  CAS  Google Scholar 

  • McKeever KH, Schurg WA, Jarrett SH, Convertino VA. Exercise training-induced hypervolemia in the horse. Medicine and Science in Sports and Exercise 19: 21–27, 1987

    PubMed  CAS  Google Scholar 

  • Koch G, Röcker L. Plasma volume and intravascular protein masses in trained boys and fit young men. Journal of Applied Physiology 43: 1085–1088, 1977

    PubMed  CAS  Google Scholar 

  • Köhler H. Fluid metabolism in exercise. Kidney International 3 (Suppl. 21): S93–S96, 1987

    Google Scholar 

  • Kolka MA, Stephenson LA, Wilkerson JE. Erythrocyte indices during a competitive marathon. Journal of Applied Physiology 52: 168–172, 1982

    PubMed  CAS  Google Scholar 

  • Leiper JB, McCormick K, Robertson JD, Whiting Ph, Maughan RJ. Fluid homeostasis during prolonged low-intensity walking on consecutive days. Clinical Science 75: 63–70, 1988

    PubMed  CAS  Google Scholar 

  • Lijnen P, Hespel P, M’Buyamba-Kabangu JR, Goris M, Lysens R, et al. Plasma atrial natriuretic peptide and cyclic nucleotide levels before and after a marathon. Journal of Applied Physiology 63: 1180–1184, 1987

    PubMed  CAS  Google Scholar 

  • Maron MB, Horvath SM, Wilkerson JE. Blood biochemical alterations during recovery from competitive marathon running. European Journal of Applied Physiology 36: 231, 1977

    Article  CAS  Google Scholar 

  • Milledge JS, Bryson EI, Catley DM, Hesp R, Luff N, et al. Sodium balance, fluid homeostasis and the renin-aldosterone system during the prolonged exercise of hill walking. Clinical Science 62: 595–604, 1982

    PubMed  CAS  Google Scholar 

  • Nose H, Mack G, Shi X, Nadel ER. Shift in body fluid com-partments after dehydration in humans. Journal of Applied Physiology 65: 318–324, 1988a

    PubMed  CAS  Google Scholar 

  • Nose H, Mack G, Shi X, Nadel ER. Role of osmolality and plasma volume during rehydration in humans. Journal of Applied Physiology 65: 325–331, 1988b

    PubMed  CAS  Google Scholar 

  • Öpstad PK, Øktedalen O, Aakvaag A, Fonnum F, Lund PK. Plasma renin activity and serum aldosterone during prolonged physical strain. European Journal of Physiology 54: 1–6, 1985

    Article  Google Scholar 

  • Oscai LB, Williams BT, Hertig BA. Effect of exercise on blood volume. Journal of Applied Physiology 24: 622–624, 1968

    PubMed  CAS  Google Scholar 

  • Pivarnick J, Kayrouz T, Senay LC. Plasma volume and protein content in progressive exercise: influence of cycle oxygenase inhibitors. Medicine and Science in Sports and Exercise 17: 153–157, 1985

    Google Scholar 

  • Röcker L, Kirsch KA, Heyduck B, Altenkirch HU. Influence of prolonged physical exercise on plasma volume, plasma proteins, electrolytes, and fluid regulating hormones. International Journal of Sports Medcine 10: 270–274, 1989

    Article  Google Scholar 

  • Sawka MN, Hubbard RW, Francesconi RP, Horstman DH. Effects of acute plasma volume expansion on altering exercise-heat performance. European Journal of Applied Physiology 51: 303–312, 1983

    Article  CAS  Google Scholar 

  • Sawka MN, Francesconi RP, Pimental NA, Pandolf KB. Hydration and vascular fluid shifts during exercise. Journal of Applied Physiology 56: 91–96, 1984

    PubMed  CAS  Google Scholar 

  • Schmidt W, Maassen N, Trost F, Boning D. Training induced effect on blood volume, erythrocyte turnover and haemoglobin oxygen binding properties. European Journal of Applied Physiology 57: 490–498, 1988

    Article  CAS  Google Scholar 

  • Schmidt W, Maassen N, Tegtbur U, Brauman KM. Changes in plasma volume and red cell formation after a marathon competition. European Journal of Applied Physiology 58: 453–458, 1989

    Article  CAS  Google Scholar 

  • Senay LC. Plasma volume and constituents of heat-exposed men before and after acclimatization. Journal of Applied Physiology 38: 570–575, 1975

    PubMed  Google Scholar 

  • Senay LC, Kok R. Effects of training and heat acclimatization on blood plasma contents of exercising men. Journal of Applied Physiology 43: 591–599, 1977

    PubMed  CAS  Google Scholar 

  • Sjöstrand T. The total quantity of hemoglobin in man and its relation to age, sex, bodyweight and height. Acta Physiologica Scandinavica 18: 324–336, 1949

    Article  Google Scholar 

  • Strauss MB, Davis RK, Rosenbaum JD, Rossmeisl EC. ‘Water diuresis’ produced during recumbency by the intravenous infusion of isotonic saline solution. Journal of Clinical Investigation 30: 862–868, 1951

    Article  PubMed  CAS  Google Scholar 

  • Van Beaumont W. Evaluation of hemoconcentration from hematocrit measurements. Journal of Applied Physiology 32: 712–713, 1972

    PubMed  Google Scholar 

  • Wade CE, Hill LC, Hunt MM, Dressendorfer RH. Plasma aldosterone and renal function in runners during a 20-day road race. European Journal of Physiology 54: 456–460, 1985

    Article  CAS  Google Scholar 

  • Williams ES, Ward MP, Milledge JS, Withey WR, Older M, et al. Effect of the exercise of seven consecutive days hill-walking on fluid homeostasis. Clinical Science 56: 305–316, 1979

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fellmann, N. Hormonal and Plasma Volume Alterations Following Endurance Exercise. Sports Medicine 13, 37–49 (1992). https://doi.org/10.2165/00007256-199213010-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199213010-00004

Navigation