Skip to main content
Log in

Defining the Role of Insulin Detemir in Basal Insulin Therapy

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Insulin detemir is a novel long-acting insulin analogue with a unique mechanism underlying its prolonged duration of action. Unlike neutral protamine Hagedorn (NPH) insulin (insulin suspension isophane) and insulin glargine, which precipitate after administration, insulin detemir remains soluble after it is injected. The prolonged duration of action of insulin detemir is a result of the ability to self-associate into hexamers and dihexamers, and to bind reversibly to albumin. This mechanism of protraction provides a more prolonged, consistent and predictable glycaemic effect in patients with type 1 or type 2 diabetes mellitus compared with NPH insulin. Clinical studies have demonstrated that insulin detemir administered once or twice daily is at least as effective as NPH insulin and insulin glargine in achieving glycaemic control. Most trials have also shown that insulin detemir exhibits less intrapatient variability in glycaemic control compared with NPH insulin and insulin glargine. One of the benefits of insulin detemir is its favourable effect on bodyweight. Insulin detemir has shown weight neutrality in patients with type 1 diabetes and is associated with less weight gain than NPH insulin in clinical studies. Patients with type 2 diabetes using insulin detemir gain less weight than patients using NPH insulin and insulin glargine. In addition, a reduced risk of hypoglycaemia, particularly nocturnal hypoglycaemia, has been reported with insulin detemir compared with NPH insulin in patients with type 1 and type 2 diabetes. A reduced risk of major and nocturnal hypoglycaemia compared with insulin glargine in patients with type 1 diabetes has also been observed. Together, these data indicate that insulin detemir is a valuable new option for basal insulin therapy in patients with type 1 or type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. United Kingdom Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837–53

    Article  Google Scholar 

  2. Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995; 28: 103–17

    Article  PubMed  CAS  Google Scholar 

  3. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329: 977–86

    Article  Google Scholar 

  4. Marre M. Before oral agents fail: the case for starting insulin early. Int J Obes Relat Metab Disord 2002; 26 Suppl. 3: S25–30

    Article  PubMed  CAS  Google Scholar 

  5. Kurtzhals P. How to achieve a predictable basal insulin? Diabetes Metab 2005; 31: 4S25–33

    Article  PubMed  CAS  Google Scholar 

  6. Kamal AD, Dixon AN, Bain SC. Safety and side effects of the insulin analogues. Expert Opin Drug Saf 2006; 5: 131–43

    Article  PubMed  CAS  Google Scholar 

  7. Polonsky KS, Given BD, van Cauter E. Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J Clin Invest 1988; 81: 442–8

    Article  PubMed  CAS  Google Scholar 

  8. Lindholm A, McEwen J, Riis AP. Improved postprandial glycemic control with insulin aspart: a randomized double-blind cross-over trial in type 1 diabetes. Diabetes Care 1999; 22: 801–5

    Article  PubMed  CAS  Google Scholar 

  9. Roach P, Woodworth JR. Clinical pharmacokinetics and pharmacodynamics of insulin lispro mixtures. Clin Pharmacokinet 2002; 41: 1043–57

    Article  PubMed  CAS  Google Scholar 

  10. DeWitt DE, Hirsch IB. Outpatient insulin therapy in type 1 and type 2 diabetes mellitus: scientific review. JAMA 2003; 289: 2254–64

    Article  PubMed  CAS  Google Scholar 

  11. Heinemann L, Linkeschova R, Rave K, et al. Time-action profile of the long-acting insulin analog insulin glargine (HOE901) in comparison with those of NPH insulin and placebo. Diabetes Care 2000; 23: 644–9

    Article  PubMed  CAS  Google Scholar 

  12. Plank J, Bodenlenz M, Sinner F, et al. A double-blind, randomized, dose-response study investigating the pharmacodynamic and pharmacokinetic properties of the long-acting insulin analog detemir. Diabetes Care 2005; 28: 1107–12

    Article  PubMed  CAS  Google Scholar 

  13. Heinemann L. Variability of insulin absorption and insulin action. Diabetes Technol Ther 2002; 4: 673–82

    Article  PubMed  Google Scholar 

  14. American Society of Health-System Pharmacists. Insulins. In: McEvoy GK, Snow EK, Rester L, et al., editors. AHFS drug information 2007. Bethesda (MD): ASHP, 2007: 3140–51

    Google Scholar 

  15. Hirsch IB. Insulin analogues. N Engl J Med 2005; 352: 174–83

    Article  PubMed  CAS  Google Scholar 

  16. Brange J, Ribel U, Hansen JF, et al. Monomeric insulins obtained by protein engineering and their medical implications. Nature 1988; 333: 679–82

    Article  PubMed  CAS  Google Scholar 

  17. Vazquez-Carrera M, Silvestre JS. Insulin analogues in the management of diabetes. Methods Find Exp Clin Pharmacol 2004; 26: 445–61

    PubMed  CAS  Google Scholar 

  18. Bolli GB, Owens DR. Insulin glargine. Lancet 2000; 356: 443–5

    Article  PubMed  CAS  Google Scholar 

  19. Garg SK, Gottlieb PA, Hisatomi ME, et al. Improved glycemic control without an increase in severe hypoglycemic episodes in intensively treated patients with type 1 diabetes receiving morning, evening, or split dose insulin glargine. Diabetes Res Clin Pract 2004; 66: 49–56

    Article  PubMed  CAS  Google Scholar 

  20. Yki-Jarvinen H, Dressier A, Ziemen M. Less nocturnal hypoglycemia and better post-dinner glucose control with bedtime insulin glargine compared with bedtime NPH insulin during insulin combination therapy in type 2 diabetes. Diabetes Care 2000; 23: 1130–6

    Article  PubMed  CAS  Google Scholar 

  21. Rosenstock J, Schwartz SL, Clark Jr CM, et al. Basal insulin therapy in type 2 diabetes: 28-week comparison of insulin glargine (HOE 901) and NPH insulin. Diabetes Care 2001; 24: 631–6

    Article  PubMed  CAS  Google Scholar 

  22. Pieber TR, Eugene-Jolchine I, Derobert E. Efficacy and safety of HOE 901 versus NPH insulin in patients with type 1 diabetes: The European Study Group of HOE 901 in type 1 diabetes. Diabetes Care 2000; 23: 157–62

    Article  PubMed  CAS  Google Scholar 

  23. Raskin P, Klaff L, Bergenstal R, et al. A 16-week comparison of the novel insulin analog insulin glargine (HOE 901) and NPH human insulin used with insulin lispro in patients with type 1 diabetes. Diabetes Care 2000; 23: 1666–71

    Article  PubMed  CAS  Google Scholar 

  24. Russell-Jones D, Simpson R, Hylleberg B, et al. Effects of QD insulin detemir or neutral protamine Hagedorn on blood glucose control in patients with type I diabetes mellitus using a basal-bolus regimen. Clin Ther 2004; 26: 724–36

    Article  PubMed  CAS  Google Scholar 

  25. Kolendorf K, Ross GP, Pavlic-Renart I, et al. Insulin detemir lowers the risk of hypoglycaemia and provides more consistent plasma glucose levels compared with NPH insulin in type 1 diabetes. Diabet Med 2006; 23: 729–35

    Article  PubMed  CAS  Google Scholar 

  26. Pieber TR, Draeger E, Kristensen A, et al. Comparison of three multiple injection regimens for type 1 diabetes: morning plus dinner or bedtime administration of insulin detemir vs. morning plus bedtime NPH insulin. Diabet Med 2005; 22: 850–7

    CAS  Google Scholar 

  27. Haak T, Tiengo A, Draeger E, et al. Lower within-subject variability of fasting blood glucose and reduced weight gain with insulin detemir compared to NPH insulin in patients with type 2 diabetes. Diabetes Obes Metab 2005; 7: 56–64

    Article  PubMed  CAS  Google Scholar 

  28. Raslova K, Bogoev M, Raz I, et al. Insulin detemir and insulin aspart: a promising basal-bolus regimen for type 2 diabetes, [published erratum appears in Diabetes Res Clin Pract 2006; 72: 112]. Diabetes Res Clin Pract 2004; 66: 193–201

    Article  PubMed  CAS  Google Scholar 

  29. Hermansen K, Davies M, Derezinski T, et al. A 26-week, randomized, parallel, treat-to-target trial comparing insulin detemir with NPH insulin as add-on therapy to oral glucose-lowering drugs in insulin-naive people with type 2 diabetes. Diabetes Care 2006; 29: 1269–74

    Article  PubMed  CAS  Google Scholar 

  30. Chapman TM, Perry CM. Insulin detemir: a review of its use in the management of type 1 and 2 diabetes mellitus. Drugs 2004; 64: 2577–95

    Article  PubMed  CAS  Google Scholar 

  31. Home P, Kurtzhals P. Insulin detemir: from concept to clinical experience. Expert Opin Pharmacother 2006; 7: 325–43

    Article  PubMed  CAS  Google Scholar 

  32. Kurtzhals P, Havelund S, Jonassen I, et al. Albumin binding of insulins acylated with fatty acids: characterization of the ligand-protein interaction and correlation between binding affinity and timing of the insulin effect in vivo. Biochem J 1995; 312(3): 725–31

    PubMed  CAS  Google Scholar 

  33. Markussen J, Havelund S, Kurtzhals P, et al. Soluble, fatty acid acylated insulins bind to albumin and show protracted action in pigs. Diabetologia 1996; 39: 281–8

    Article  PubMed  CAS  Google Scholar 

  34. Kurtzhals P, Colding-Jorgensen M. Albumin binding of insulin detemir reduces the risk for hypoglycemic events [abstract]. Diabetes 2004; 53 Suppl. 2: A477

    Google Scholar 

  35. Kurtzhals P. Engineering predictability and protraction in a basal insulin analogue: the pharmacology of insulin detemir. Int J Obes 2004; 28 Suppl. 2: S23–8

    Article  CAS  Google Scholar 

  36. Lindholm A. New insulins in the treatment of diabetes mellitus. Best Pract Res Clin Gastroenterol 2002; 16: 475–92

    Article  PubMed  CAS  Google Scholar 

  37. Havelund S, Plum A, Ribel U, et al. The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin. Pharm Res 2004; 21: 1498–504

    Article  PubMed  CAS  Google Scholar 

  38. Soerensen AR, Tornqvist H. Effects of insulin detemir on glucose uptake and utilisation in human and rat adipocytes [abstract]. Diabetes 2004; 53 Suppl. 2: A558

    Google Scholar 

  39. Stidsen CE, Albrechtsen KH, Frost M, et al. Similar binding profiles of insulin detemir and human insulin for insulin receptor isoforms [abstract]. Diabetes 2004; 53 Suppl. 2: A331

    Google Scholar 

  40. Kurtzhals P, Schaffer L, Sorensen A, et al. Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes 2000; 49: 999–1005

    Article  PubMed  CAS  Google Scholar 

  41. Hennige AM, Sartorius T, Tschritter O, et al. Tissue selectivity of insulin detemir action in vivo. Diabetologia 2006; 49: 1274–82

    Article  PubMed  CAS  Google Scholar 

  42. Hordern SV, Wright JE, Umpleby AM, et al. Comparison of the effects on glucose and lipid metabolism of equipotent doses of insulin detemir and NPH insulin with a 16-h euglycaemic clamp. Diabetologia 2005; 48: 420–6

    Article  PubMed  CAS  Google Scholar 

  43. Brunner GA, Sendhofer G, Wutte A, et al. Pharmacokinetic and pharmacodynamic properties of long-acting insulin analogue NN304 in comparison to NPH insulin in humans. Exp Clin Endocrinol Diabetes 2000; 108: 100–5

    Article  PubMed  CAS  Google Scholar 

  44. Heinemann L, Sinha K, Weyer C, et al. Time-action profile of the soluble, fatty acid acylated, long-acting insulin analogue NN304. Diabet Med 1999; 16: 332–8

    Article  PubMed  CAS  Google Scholar 

  45. Pieber TR, Plank J, Gorzer E. Duration of action, pharmacodynamic profile and between-subject variability of insulin detemir in subjects with type 1 diabetes [abstract]. Diabetologia 2002; 45 Suppl. 2: A257

    Google Scholar 

  46. Heise T, Nosek L, Ronn BB, et al. Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. Diabetes 2004; 53: 1614–20

    Article  PubMed  CAS  Google Scholar 

  47. Pieber TR, Wutte A, Plank J, et al. Comparison of pharmacodynamic and pharmacokinetic dose-response profiles between insulin detemir and NPH insulin in subjects with type 2 diabetes [abstract]. Diabetes 2004; 53 Suppl. 2: A142

    Google Scholar 

  48. Strange P, McGill J, Mazzeo M. Reduced pharmacokinetic variability (PK) of a novel, long-acting insulin analog [abstract]. Diabetes 1999; 48 Suppl. 1: A103

    Google Scholar 

  49. Klein O, Lynge J, Endahl L, et al. Albumin-bound basal insulin analogues (insulin detemir and NN344): comparable time-action profiles but less variability than insulin glargine in type 2 diabetes. Diabetes Obes Metab 2006; 9(3): 1–10

    Google Scholar 

  50. Bott S, Tusek C, Jacobsen LV, et al. Insulin detemir under steady-state conditions: no accumulation and constant metabolic effect over time with twice daily administration in subjects with type 1 diabetes. Diabet Med 2006; 23: 522–8

    Article  PubMed  CAS  Google Scholar 

  51. Danne T, Lupke K, Walte K, et al. Insulin detemir is characterized by a consistent pharmacokinetic profile across age-groups in children, adolescents, and adults with type 1 diabetes. Diabetes Care 2003; 26: 3087–92

    Article  PubMed  CAS  Google Scholar 

  52. Jacobsen LV, Popescu G, Plum A. Pharmacokinetics of insulin detemir in subjects with renal or hepatic impairment [abstract]. Diabetes 2002; 51 Suppl. 2: A102

    Google Scholar 

  53. Jhee SS, Lyness WH, Rojas PB, et al. Similarity of insulin detemir pharmacokinetics, safety, and tolerability profiles in healthy Caucasian and Japanese American subjects. J Clin Pharmacol 2004; 44: 258–64

    Article  PubMed  CAS  Google Scholar 

  54. Rave K, Nosek L, Heinemann L. Insulin detemir and NPH insulin: comparison of pharmacokinetic and pharmacodynamic properties in Japanese and Causasian volunteers [abstract]. Diabetes 2003; 52 Suppl. 1: A453

    Google Scholar 

  55. Hompesch M, Troupin B, Heise T, et al. Time-action profile of insulin detemir and NPH insulin in patients with type 2 diabetes from different ethnic groups. Diabetes Obes Metab 2006; 8: 568–73

    Article  PubMed  CAS  Google Scholar 

  56. Novo Nordisk Inc. Levemir® (insulin detemir [rDNA origin] injection) [product information]. Princeton (NJ): Novo Nordisk, 2005

    Google Scholar 

  57. Kurtzhals P, Havelund S, Jonassen I, et al. Effect of fatty acids and selected drugs on the albumin binding of a long-acting, acylated insulin analogue. J Pharm Sci 1997; 86: 1365–8

    Article  PubMed  CAS  Google Scholar 

  58. Home P, Bartley P, Russell-Jones D, et al. Insulin detemir offers improved glycemic control compared with NPH insulin in people with type 1 diabetes: a randomized clinical trial. Diabetes Care 2004; 27: 1081–7

    Article  PubMed  CAS  Google Scholar 

  59. Hermansen K, Fontaine P, Kukolja KK, et al. Insulin analogues (insulin detemir and insulin aspart) versus traditional human insulins (NPH insulin and regular human insulin) in basalbolus therapy for patients with type 1 diabetes. Diabetologia 2004; 47: 622–9

    Article  PubMed  CAS  Google Scholar 

  60. Vague P, Selam JL, Skeie S, et al. Insulin detemir is associated with more predictable glycemic control and reduced risk of hypoglycemia than NPH insulin in patients with type 1 diabetes on a basal-bolus regimen with premeal insulin aspart. Diabetes Care 2003; 26: 590–6

    Article  PubMed  CAS  Google Scholar 

  61. Roberts A, Standl E, Bayer T, et al. Efficacy and safety of 6-month treatment with insulin detemir in type 1 diabetic patients on a basal/bolus regimen [abstract]. Diabetologia 2001; 44: A207

    Google Scholar 

  62. Robertson KJ, Schoenle E, Gucev Z, et al. Insulin detemir compared with NPH insulin in children and adolescents with type 1 diabetes. Diabet Med 2007; 24: 27–34

    Article  PubMed  CAS  Google Scholar 

  63. de Leeuw I, Vague P, Selam J-L, et al. Insulin detemir used in basal-bolus therapy in people with type 1 diabetes is associated with a lower risk of nocturnal hypoglycaemia and less weight gain over 12 months in comparison to NPH insulin. Diabetes Obes Metab 2005; 7: 73–82

    Article  PubMed  Google Scholar 

  64. Standl E, Lang H, Roberts A. The 12-month efficacy and safety of insulin detemir and NPH insulin in basal-bolus therapy for the treatment of type 1 diabetes. Diabetes Technol Ther 2004; 6: 579–88

    Article  PubMed  CAS  Google Scholar 

  65. Jones DR, Clauson P, Ong S, et al. Less glucose variability with insulin detemir compared to NPH insulin in subjects with type 1 diabetes undergoing continuous glucose monitoring [abstract]. Diabetes 2006; 55 Suppl. 1: A118

    Google Scholar 

  66. Pieber TR, Treichel HC, Hompesch B, et al. Comparison of insulin detemir and insulin glargine in subjects with type 1 diabetes using intensive insulin therapy. Diabet Med 2007; 24: 635–42

    Article  PubMed  CAS  Google Scholar 

  67. Rosenstock J, Davies M, Home PD, et al. Insulin detemir added to oral anti-diabetic drugs in type 2 diabetes provides glycemic control comparable to insulin glargine with less weight gain [abstract]. Diabetes 2006; 55 Suppl. 1: A132

    Google Scholar 

  68. Liebl A, Prager R, Kalser M, et al. Biphasic insulin aspart 30 (BIAsp30), insulin detemir (IDet) and insulin aspart (IAsp) allow patients with type 2 diabetes to reach A1C target: the PREFER study [abstract]. Diabetes 2006; 55 Suppl. 1: A123

    Google Scholar 

  69. Philis-Tsimikas A, Charpentier G, Clauson P, et al. Comparison of once-daily insulin detemir with NPH insulin added to a regimen of oral antidiabetic drugs in poorly controlled type 2 diabetes. Clin Ther 2006; 28: 1569–81

    Article  PubMed  CAS  Google Scholar 

  70. Luddeke H-J, Hansen JB, Nauck M. PREDICTIVE™: a global, prospective, observational study to evaluate insulin detemir treatment in type 1 and type 2 diabetes. German Cohort Data [abstract]. Diabetes 2006; 55 Suppl. 1: A122

    Google Scholar 

  71. Luddeke HJ, Sreenan S, Aczel S, et al. PREDICTIVE: a global, prospective observational study to evaluate insulin detemir treatment in types 1 and 2 diabetes. Baseline characteristics and predictors of hypoglycaemia from the European cohort. Diabetes Obes Metab 2007; 9: 428–34

    Google Scholar 

  72. Maxeiner S, Hansen JB, Nauck M. Switching from a human insulin basal-bolus regimen to insulin analog basal-bolus therapy with insulin detemir/insulin aspart improves glycemic control and reduces hypoglycemic episodes in patients with type 1 diabetes: results from German subgroup of the PREDICTIVE™ study [abstract]. Diabetes 2006; 55 Suppl. 1: A127

    Google Scholar 

  73. Hermansen K, Derezinski T, Kim H, et al. Treatment with insulin detemir in combination with oral agents is associated with less risk of hypoglycaemia and less weight gain than NPH insulin at comparable levels of glycaemic improvement in people with type 2 diabetes [abstract]. Diabetologia 2004; 47 Suppl. 1: A273–4

    Google Scholar 

  74. Meneghini LF, Rosenberg KH, Koenen C, et al. Insulin detemir improves glycaemic control with less hypoglycaemia and no weight gain in patients with type 2 diabetes who were insulin naive or treated with NPH or insulin glargine: clinical practice experience from a German subgroup of the PREDICTIVE study. Diabetes Obes Metab 2007; 9: 418–27

    Article  PubMed  CAS  Google Scholar 

  75. Fritsche A, Haring H. At last, a weight neutral insulin? Int J Obes Relat Metab Disord 2004; 28 Suppl. 2: S41–6

    Article  PubMed  CAS  Google Scholar 

  76. Tremble JM, Donaldson D. Is continued weight gain inevitable in type 2 diabetes mellitus? J R Soc Health 1999; 119: 235–9

    Article  CAS  Google Scholar 

  77. Hermansen K, Tamer SC. The advantage of less weight gain increases with baseline obesity when insulin detemir rather than NPH insulin is added to oral agents in type 2 diabetes [abstract]. Diabetes 2005; 54: A67

    Google Scholar 

  78. Davies M, Derezinski T, Kim H, et al. No correlation between weight gain and number of hypoglycemic events in patients with type 2 diabetes treated with insulin detemir as compared to NPH insulin [abstract]. Diabetes 2006; 55 Suppl. 1: A466

    Google Scholar 

  79. Robertson K, Schonle E, Gucev Z, et al. Benefits of insulin detemir over NPH insulin in children and adolescents with type 1 diabetes: lower and more predictable fasting plasma glucose and lower risk of nocturnal hypoglycemia [abstract]. Diabetes 2004; 53 Suppl. 2: A144

    Google Scholar 

  80. Cryer PE, Davis SN, Shamoon H. Hypoglycemia in diabetes. Diabetes Care 2003; 26: 1902–12

    Article  PubMed  CAS  Google Scholar 

  81. Mathieu C. Can we reduce hypoglycaemia with insulin detemir? Int J Obes 2004; 28 (Suppl) 2: S35–40

    Article  CAS  Google Scholar 

  82. Heller S, Kim H. Insulin detemir reduces hypoglycemic risk at comparable HbA1c values compared to NPH insulin in patients with type 1 diabetes [abstract]. Diabetes 2005; 54 Suppl. 1: A120

    Google Scholar 

  83. Garber AJ, Kim H, Santiago OM. Lower risk of hypoglycemia with insulin detemir vs NPH insulin in elderly people with type 2 diabetes: a pooled analysis of phase 3 trials [abstract]. Diabetes 2005; 54 Suppl. 1: A118

    Google Scholar 

  84. Dornhorst A, Merilainen M, Ratzmann K-P. Initiating insulin detemir improves glycemic control without weight gain in OAD-treated insulin naive patients with type 2 diabetes: results from a German subgroup of the PREDICTIVE study [abstract]. Diabetes 2006; 55 Suppl. 1: A110

    Article  Google Scholar 

  85. Dornhorst A, Merilainen M, Ratzmann K-P. Insulin detemir with or without OAD improves glycemic control and reduces hypoglycemic episodes, without weight gain, in type 2 diabetes patients previously treated with NPH or glargine: results from a German subgroup of PREDICTIVE [abstract]. Diabetes 2006; 55 Suppl. 1: A146

    Google Scholar 

  86. Guerci B, Sauvanet JP. Subcutaneous insulin: pharmacokinetic variability and glycemic variability. Diabetes Metab 2005; 31: 4S7–24

    Article  PubMed  CAS  Google Scholar 

  87. Gin H, Hanaire-Broutin H. Reproducibility and variability in the action of injected insulin. Diabetes Metab 2005; 31: 7–13

    Article  PubMed  CAS  Google Scholar 

  88. Heller S, Kim H, Draeger E. Within-person variation in fasting blood glucose is correlated to incidence of hypoglycaemia in people with type 1 diabetes treated with insulin detemir and NPH insulin [abstract]. Diabetologia 2004; 47 Suppl. 1: A303

    Google Scholar 

  89. Meneghini L, Koenen C, Weng W, et al. The usage of a simplified self-titration dosing guideline (303 Algorithm) for insulin detemir in patients with type 2 diabetes: results of the randomized, controlled PREDICTIVE 303 study. Diabetes Obes Metab 2007; 9: 902–13

    Article  PubMed  CAS  Google Scholar 

  90. Bohannon NJ. Insulin delivery using pen devices: simple-to-use tools may help young and old alike. Postgrad Med 1999; 106: 57–64, 68

    Article  PubMed  CAS  Google Scholar 

  91. Korytkowski M, Bell D, Jacobsen C, et al. A multicenter, randomized, open-label, comparative, two-period crossover trial of preference, efficacy, and safety profiles of a prefilled, disposable pen and conventional vial/syringe for insulin injection in patients with type 1 or 2 diabetes mellitus. Clin Ther 2003; 25: 2836–48

    Article  PubMed  CAS  Google Scholar 

  92. Polonsky KS, Given BD, Hirsch LJ, et al. Abnormal patterns of insulin secretion of non-insulin-dependent diabetes mellitus. N Engl J Med 1988; 318: 1231–9

    Article  PubMed  CAS  Google Scholar 

  93. Scholtz HE, Pretorius SG, Wessels DH, et al. Pharmacokinetic and glucodynamic variability: assessment of insulin glargine, NPH insulin and insulin ultralente in healthy volunteers using a euglycaemic clamp technique. Diabetologia 2005; 48: 1988–95

    Article  PubMed  CAS  Google Scholar 

  94. Home PD, Lindholm A, Riis A. Insulin aspart vs. human insulin in the management of long-term blood glucose control in type 1 diabetes mellitus: a randomized controlled trial. Diabet Med 2000; 17: 762–70

    CAS  Google Scholar 

  95. Palmer AJ, Roze S, Valentine WJ, et al. Cost-effectiveness of detemir-based basal/bolus therapy versus NPH-based basal/ bolus therapy for type 1 diabetes in a UK setting: an economic analysis based on meta-analysis results of four clinical trials. Curr Med Res Opin 2004; 20: 1729–46

    Article  PubMed  Google Scholar 

  96. Palmer AJ, Valentine WJ, Ray JA, et al. An economic assessment of analogue basal-bolus insulin versus human basalbolus insulin in subjects with type 1 diabetes in the UK. Curr Med Res Opin 2007; 23: 895–901

    Article  PubMed  Google Scholar 

  97. Valentine WJ, Palmer AJ, Erny-Albrecht KM, et al. Cost-effectiveness of basal insulin from a US health system perspective: comparative analyses of detemir, glargine, and NPH. Adv Ther 2006; 23: 191–207

    Article  PubMed  Google Scholar 

  98. Cobden D, Koenen C, Valentine W. Economic evaluation of therapy conversion in type 2 patients: case-study of basal insulin [abstract]. Diabetes 2006; 55 Suppl. 1: A550

    Google Scholar 

  99. Valentine W, Cobden D, Koenen C. Initiating basal analog insulin among type 2 patients: economic analysis of clinical experience [abstract]. Diabetes 2006; 55 Suppl. 1: A550–1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales, J. Defining the Role of Insulin Detemir in Basal Insulin Therapy. Drugs 67, 2557–2584 (2007). https://doi.org/10.2165/00003495-200767170-00007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200767170-00007

Keywords

Navigation