Skip to main content
Log in

Pharmacokinetic-Pharmacodynamic Relationships for Opioids in Balanced Anaesthesia

  • Review Article
  • Pharmacokinetic-Pharmacodynamic Relationships
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The pure μ-receptor opioid agonists fentanyl, sufentanil and alfentanil are commonly used to provide the specific anti-nociceptive component of a balanced anaesthesia technique. Trefentanil and remifentanil are new opioids with a very short duration of action. Remifentanil has an ester structure and is very rapidly metabolised by blood and tissue esterases.

Different perioperative stimuli require different plasma concentrations to suppress responses of the patient. The ability of the anaesthesiologist to select a precise dosage scheme for the individual patient is impeded by the large inter-individual pharmacokinetic and pharmacodynamic variability. In addition, the combination of opioids and other drugs used to produce the desired components of balanced anaesthesia may exert additive, synergistic or antagonistic effects. Knowledge of factors influencing the pharmacokinetic s and pharmacodynamics is still fragmentary and often controversial. Consequently, the opioid dose needs to be adjusted according to the responses of the patient during surgery to ensure adequate anaesthesia and rapid recovery.

The duration of action is not predicted by the elimination half-life alone. The decline in effect-site concentration is dependent on the complex entity of infusion duration, and pharmacokinetic and pharmacodynamic parameters. Computer simulations of infusions of varying duration have been extremely useful when selecting an opioid for a specific clinical scenario on a rational basis.

Traditionally, opioids are still administered by intermittent bolus injections. A disadvantage of this method of administration is that plasma concentrations fluctuate above and below the level required for adequate anaesthesia. Computer-assisted infusion pumps make it possible to target a particular drug concentration in plasma and to maintain or change this concentration as needed. This technique provides more stable anaesthesia and a more rapid recovery of the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hull CJ. Pharmacokinetics for anaesthesia. Oxford: Butter-worth-Heinemann, 1991: 284–325

    Google Scholar 

  2. Bailey PL, Stanley TH. Intravenous opioid anesthetics. In: Miller RD, editor. Anesthesia. 4th ed. New York: Churchill Livingstone, 1994: 291–388

    Google Scholar 

  3. Scott JC, Cooke JE, Stanski DR. Electroencephalographic quantitation of opioid effect: comparative pharmacodynamics of fentanyl and sufentanil. Anesthesiology 1991; 74: 34–42

    Article  PubMed  CAS  Google Scholar 

  4. Scott JC, Ponganis KV, Stanski DR. EEG quantitation of narcotic effect: the comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology 1985; 62: 234–41

    Article  PubMed  CAS  Google Scholar 

  5. Lemmens HJM, Dyck JB, Shafer SL, et al. Pharmacokineticpharmacodynamic modeling in drug development: application to the investigational opioid trefentanil. Clin Pharmacol Ther 1994; 56(3): 261–71

    Article  PubMed  CAS  Google Scholar 

  6. Egan TD, Lemmens HJM, Fiset P, et al. The pharmacokinetics and pharmacodynamics of GI87084B [abstract]. Anesthesiology 1992; 77: (3A) A369

    Article  Google Scholar 

  7. Westmoreland CL, Sebel PS, Gropper A. Fentanyl or alfentanil decreases the minimum alveolar anesthetic concentration of isoflurane in surgical patients. Anesth Analg 1994; 78: 23–8

    Article  PubMed  CAS  Google Scholar 

  8. Glass PS, Doherty M, Jacobs JR, et al. Plasma concentration of fentanyl, with 70% nitrous oxide, to prevent movement at skin incision. Anesthesiology 1993; 78: 842–7

    Article  PubMed  CAS  Google Scholar 

  9. Ausems ME, Hug CC, Stanski DR, et al. Plasma concentrations of alfentanil required to supplement nitrous oxide anesthesia for general surgery. Anesthesiology 1986; 65: 362–73

    Article  PubMed  CAS  Google Scholar 

  10. Ebling WF, Lee EN, Stanski DR. Understanding pharmacokinetics and pharmacodynamics through computer stimulation: I. The comparative clinical profiles of fentanyl and alfentanil. Anesthesiology 1990; 72: 650–8

    Article  PubMed  CAS  Google Scholar 

  11. Lemmens HJM, Burm AGL, Bovill JG, et al. Pharmacodynamics of alfentanil. The role of plasma protein binding. Anesthesiology 1992; 76: 65–70

    Article  PubMed  CAS  Google Scholar 

  12. Scott JC, Stanski DR. Decreased fentanyl and alfentanil dose requirement with increasing age. A simultaneous pharmacokinetic and pharmacodynamic evaluation. J Pharmacol Exp Ther 1987; 240: 159–66

    PubMed  CAS  Google Scholar 

  13. Lemmens HJM, Bovill JG, Hennis PJ, et al. Age has no effect on the pharmacodynamics of alfentanil. Anesth Analg 1988; 67: 956–60

    Article  PubMed  CAS  Google Scholar 

  14. Lemmens HJM, Bovill JG, Hennis PJ, et al. Alcohol consumption alters the pharmacodynamics of alfentanil. Anesthesiology 1989; 71: 669–74

    Article  PubMed  CAS  Google Scholar 

  15. McEwan AI, Smith C, Dyar O, et al. Isoflurane minimum alveolar concentration reduction by fentanyl. Anesthesiology 1993; 78: 864–9

    Article  PubMed  CAS  Google Scholar 

  16. Sebel PS, Glass PS, Fletcher JE, et al. Reduction of the MAC of desflurane with fentanyl. Anesthesiology 1992; 76: 52–9

    Article  PubMed  CAS  Google Scholar 

  17. Brunner MD, Braithwaite P, Jhaver R, et al. MAC reduction of isoflurane by sufentanil. Br J Anaesth 1994; 72: 42–6

    Article  PubMed  CAS  Google Scholar 

  18. Ghouri AF, White PR. Effect of fentanyl and nitrous oxide on the desflurane anesthetic requirement. Anesth Analg 1991; 72: 377–81

    Article  PubMed  CAS  Google Scholar 

  19. Vuyk J, Lim T, Engbers FH, et al. Pharmacodynamics of alfentanil as a supplement to propofol or nitrous oxide for lower abdominal surgery in female patients. Anesthesiology 1993; 78: 1036–45

    Article  PubMed  CAS  Google Scholar 

  20. Vinik HR, Bradley EL, Kissin I. Triple anesthetic combination: propofol-midazolam-alfentanil. Anesth Analg 1994; 78: 354–8

    Article  PubMed  CAS  Google Scholar 

  21. Short TG, Plummer JL, Chui PT. Hypnotic and anaesthetic interactions between midazolam, propofol and alfentanil. Br J Anaesth 1992; 69: 162–7

    Article  PubMed  CAS  Google Scholar 

  22. Ben-Shlomo I, Finger J, Bar-Av E, et al. Propofol and fentanyl act additively for induction of anaesthesia. Anaesthesia 1993; 48: 111–3

    Article  PubMed  CAS  Google Scholar 

  23. Telford RJ, Glass PS, Goodman D, et al. Fentanyl does not alter the ‘sleep’ plasma concentration of thiopental. Anesth Analg 1992; 75: 523–9

    Article  PubMed  CAS  Google Scholar 

  24. Kissin I, Vinik HR, Castillo R, et al. Alfentanil potentiates midazolam-induced unconsciousness in subanalgesic doses. Anesth Analg 1990; 71: 65–9

    PubMed  CAS  Google Scholar 

  25. Ben-Shlomo I, abd-el-Khalim H, Ezry J, et al. Midazolam acts synergistically with fentanyl for induction of anaesthesia. Br J Anaesth 1990; 64: 45–7

    Article  PubMed  CAS  Google Scholar 

  26. Jarvis DA, Duncan SR, Segal IS, et al. Ventilatory effects of clonidine alone and in the presence of alfentanil, in human volunteers. Anesthesiology 1992; 76: 899–905

    Article  PubMed  CAS  Google Scholar 

  27. Furst SR, Weinger MB. Dexmedetomidine, a selective alpha 2-agonist, does not potentiate the cardiorespiratory depression of alfentanil in the rat. Anesthesiology, 1990; 72: 882–8

    Article  PubMed  CAS  Google Scholar 

  28. Ruiz F, Dierssen M, Florez J, et al. Potentiation of acute opioid-induced respiratory depression and reversal of tolerance by the calcium antagonist nimodipine in awake rats. Naunyn Schmiedebergs Arch Pharmacol 1993; 348: 633–7

    Article  PubMed  CAS  Google Scholar 

  29. Vaupel DB, Lange WR, London ED. Effects of verapamil on morphine-induced euphoria, analgesia and respiratory depression in humans. J Pharmacol Exp Ther 1993; 267: 1386–94

    PubMed  CAS  Google Scholar 

  30. Miller DR, Wellwood M, Taesdale SJ, et al. Effects of anesthetic induction on myocardial function and metabolism: a comparison of fentanyl, sufentanil and alfentanil. Can J Anaesth 1988; 35: 219–33

    Article  PubMed  CAS  Google Scholar 

  31. Prakash O, Verdouw PD, De jong JW, et al. Haemodynamics and biochemical variables after induction of anesthaesia in patients undergoing coronary artery bypass surgery. Can J Anaesth 1980; 27: 223–9

    Article  CAS  Google Scholar 

  32. Stoeckel H, Schuttler J, Magnussen H, et al. Plasma fentanyl concentrations and occurrence of respiratory depression in volunteers. Br J Anaesth 1982; 54: 1087–95

    Article  PubMed  CAS  Google Scholar 

  33. Trindle MR, Dodson BA, Rampil IJ. Effects of fentanyl versus sufentanil in equianesthetic doses on middle cerebral artery blood flow velocity. Anesthesiology 1993; 78: 454–60

    Article  PubMed  CAS  Google Scholar 

  34. Sperry RJ, Bailey PL, Reichman MV, et al. Fentanyl and sufentanil increase intracranial pressure in head trauma patients. Anesthesiology 1992; 77: 416–20

    Article  PubMed  CAS  Google Scholar 

  35. Moss E. Alfentanil increases intracranial pressure when intracranial compliance is low. Anaesthesia 1992; 47: 134–6

    Article  PubMed  CAS  Google Scholar 

  36. Weinstabl C, Mayer N, Richling B, et al. Effect of sufentanil on intracranial pressure in neurosurgical patients. Anaesthesia 1991; 46: 837–40

    Article  PubMed  CAS  Google Scholar 

  37. Herrick IA, Gelb AW, Manninen PH, et al. Effects of fentanyl, sufentanil, and alfentanil on brain retractor pressure. Anesth Analg 1991; 72: 359–63

    Article  PubMed  CAS  Google Scholar 

  38. Tempelhoff R, Modica PA, Bernardo KL, et al. Fentanyl-induced electrocorticographic seizures in patients with complex partial epilepsy. J Neurosurg 1992; 77: 201–8

    Article  PubMed  CAS  Google Scholar 

  39. Streisand JB, Bailey PL, LeMaire L, et al. Fentanyl-induced rigidity and unconsciousness in human volunteers. Incidence, duration, and plasma concentrations. Anesthesiology 1993; 78: 629–34

    Article  PubMed  CAS  Google Scholar 

  40. Gold BS, Kitz DS, Lecky JH, et al. Unanticipated admission to the hospital following ambulatory surgery. JAMA 1989; 262: 3008–10

    Article  PubMed  CAS  Google Scholar 

  41. Okum GS, Colonna-Romano P, Horrow JC. Vomiting after alfentanil anesthesia: effect of dosing method. Anesth Analg 1992; 75: 558–60

    Article  PubMed  CAS  Google Scholar 

  42. Raftery S, Sherry E. Total intravenous anaesthesia with propofol and alfentanil protects against postoperative nausea and vomiting. Can J Anaesth 1992; 39: 37–40

    Article  PubMed  CAS  Google Scholar 

  43. Egan TD, Lemmens HJM, Fiset P, et al. The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers. Anesthesiology 1993; 79: 881–92

    Article  PubMed  CAS  Google Scholar 

  44. Westmoreland CL, Hoke JF, Sebel PS, et al. Pharmacokinetics of remifentanil (GI87084B) and its major metabolite (GI90291) in patients undergoing elective inpatient surgery. Anesthesiology 1993; 79: 893–904

    Article  PubMed  CAS  Google Scholar 

  45. Rosow C. Remifentanil: a unique opioid analgesic [comment]. Anesthesiology 1993; 79: 875–6

    PubMed  CAS  Google Scholar 

  46. Boer F, Bovill JG, Burm AGL, et al. Uptake of sufentanil, alfentanil and morphine in the lungs of patients about to undergo coronary artery surgery. Br J Anaesth 1992; 68: 370–5

    Article  PubMed  CAS  Google Scholar 

  47. Roerig DL, Kotrly KJ, Vucins EJ, et al. First pass uptake of fentanyl, meperidine, and morphine in the human lung. Anesthesiology 1987; 67: 466–72

    Article  PubMed  CAS  Google Scholar 

  48. Matteo RS, Schwartz AE, Ornstein E, et al. Pharmacokinetics of sufentanil in the elderly surgical patient. Can J Anaesth 1990; 37: 852–6

    Article  PubMed  CAS  Google Scholar 

  49. Helmers JH, van Leeuwen L, Zuurmond WW. Sufentanil pharmacokinetics in young adult and elderly surgical patients. Eur J Anaesthesiol 1994; 11: 181–5

    PubMed  CAS  Google Scholar 

  50. Lange H, Stephan H, Zielmann S, et al. Hepatic disposition of sufentanil in patients undergoing coronary bypass surgery. Acta Anaesthesiol Scand 1993; 37: 154–8

    Article  PubMed  CAS  Google Scholar 

  51. Burm AGL, Ausems ME, Spierdijk J, et al. Pharmacokinetics of alfentanil administered at a variable rate during three types of surgery. Eur J Anaesthesiol 1993; 10: 241–51

    PubMed  CAS  Google Scholar 

  52. Lehmann KA, Sipakis K, Gasparini R, et al. Pharmacokinetics of sufentanil in general surgical patients under different conditions of anaesthesia. Acta Anaesthesiol Scand 1993; 37: 176–80

    Article  PubMed  CAS  Google Scholar 

  53. Schwartz AE, Matteo RS, Ornstein E, et al. Pharmacokinetics of sufentanil in obese patients. Anesth Analg 1991; 73: 790–3

    PubMed  CAS  Google Scholar 

  54. Kharasch ED, Thummel KE. Human alfentanil metabolism by cytochrome P450 3A3/4. An explanation for the interindividual variability in alfentanil clearance? Anesth Analg 1993; 76: 1033–9

    CAS  Google Scholar 

  55. Yun CH, Wood M, Wood AJ, et al. Identification of the pharmacogenetic determinants of alfentanil metabolism: cytochrome P-450 3A4. An explanation of the variable elimination clearance. Anesthesiology 1992; 77: 467–74

    Article  PubMed  CAS  Google Scholar 

  56. Nimmo WS, Thompson PG, Prescott LF. Microsomal enzyme induction after halothane anesthesia. Br J Clin Pharmacol 1981; 12: 433–4

    Article  PubMed  CAS  Google Scholar 

  57. Bartkowski RR, Goldberg ME, Huffnagle S, et al. Sufentanil disposition. Is it affected by erythromycin administration? Anesthesiology 1993; 78: 260–5

    CAS  Google Scholar 

  58. Maurer PM, Bartkowski RR. Drug interactions of clinical significance with opioid analgesics. Drug Saf 1993; 8: 30–48

    Article  PubMed  CAS  Google Scholar 

  59. Ferrier C, Marty J, Bouffard Y, et al. Alfentanil pharmacokinetics in patients with cirrhosis. Anesthesiology 1985; 62: 480–4

    Article  PubMed  CAS  Google Scholar 

  60. Chauvin M, Ferrier C, Haberer JP, et al. Sufentanil pharmacokinetics in patients with cirrhosis. Anesth Analg 1989; 68: 1–4

    Article  PubMed  CAS  Google Scholar 

  61. Janicki PK, James MF, Erskine WA. Propofol inhibits enzymatic degradation of alfentanil and sufentanil by isolated liver microsomes in vitro. Br J Anaesth 1992; 68: 311–2

    Article  PubMed  CAS  Google Scholar 

  62. Kharasch ED, Hill HF, Eddy AC. Influence of dexmedetomidine and clonidine on human liver microsomal alfentanil metabolism. Anesthesiology 1991; 75: 520–4

    Article  PubMed  CAS  Google Scholar 

  63. Shafer SL, Stanski DR. Improving the clinical utility of anesthetic drug pharmacokinetics. Anesthesiology 1992; 76: 327–30

    Article  PubMed  CAS  Google Scholar 

  64. Youngs EJ, Shafer SL. Pharmacokinetic parameters relevant to recovery from opioids. Anesthesiology 1994; 81(4): 833–42

    Article  PubMed  CAS  Google Scholar 

  65. Shafer SL, Varvel JR. Pharmacokinetics, pharmacodynamics, and rational opioid selection. Anesthesiology 1991; 74: 53–63

    Article  PubMed  CAS  Google Scholar 

  66. Schuttler J, Schwilden H, Stoeckel H. Pharmacokinetics as applied to total intravenous anaesthesia. Practical implications. Anaesthesia 1983; 38 Suppl.: 53–6

    Article  PubMed  Google Scholar 

  67. Shafer SL, Siegel LC, Cooke JE, et al. Testing computer controlled infusion pumps by simulation. Anesthesiology 1988; 68: 261–6

    Article  PubMed  CAS  Google Scholar 

  68. Ausems ME, Vuyk J, Hug CC, et al. Comparison of a computer-assisted infusion versus intermittent bolus administration of alfentanil as a supplement to nitrous oxide for lower abdominal surgery. Anesthesiology 1988; 68: 851–61

    Article  PubMed  CAS  Google Scholar 

  69. Bovill JG, Sebel PS, Blackburn CL, et al. The pharmacokinetics of sufentanil in surgical patients. Anesthesiology 1984; 61: 502–6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemmens, H.J.M. Pharmacokinetic-Pharmacodynamic Relationships for Opioids in Balanced Anaesthesia. Clin-Pharmacokinet 29, 231–242 (1995). https://doi.org/10.2165/00003088-199529040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199529040-00003

Keywords

Navigation