Skip to main content
Log in

Clinical Pharmacokinetics of Clomipramine

Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Clomipramine is a tricyclic antidepressant medication widely used in Western Europe. Its pharmacokinetics have been studied essentially in healthy volunteers. By combining published information obtained during observational studies, it has been possible to derive a fairly precise picture of the behaviour of both parent compound and main metabolite (demethyl-clomipramine) in humans.

Clomipramine can be compared with amitriptyline or imipramine so far as its physicochemical properties are concerned. As a consequence, its pharmacokinetic profile is also similar to that observed for these 2 drugs. Clomipramine is well absorbed from the gastrointestinal tract, but undergoes an important first-pass metabolism to demethyl-clomipramine which is pharmacologically active and participates in both therapeutic and unwanted effects. Protein binding is high, and the apparent volume of distribution is very large (i.e. < 1000L). After reaching the systemic circulation, clomipramine is further biotransformed into demethyl-clomipramine, and both active principles are hydroxylated to metabolites which are further conjugated before being excreted in urine. Hydroxylation of parent drug and metabolite is under polymorphic genetic control by the same cytochrome P450 as debrisoquine and sparteine. The apparent elimination half-life of clomipramine is about 24h and that of demethyl-clomipramine, 96h. Accordingly, the time to reach steady-state for both active moieties is in general around 3 weeks.

Various pathological or environmental factors influence the behaviour of clomipramine and demethyl-clomipramine. Patients genetically deficient in hydroxylation accumulate demethylclomipramine at high concentrations that can produce serious side effects and/or nonresponse. The same is true for the coadministration of neuroleptics, in particular phenothiazines. Smoking induces demethylation, whereas long term alcohol intake appears to reduce this metabolic pathway. Finally, age usually diminishes both demethylation and hydroxylation, leading to a lower daily dose of clomipramine in most elderly patients.

Studies relating blood concentrations of clomipramine and demethyl-clomipramine are conflicting. However, analysis of the available information indicates that blood concentrations lower than 150 µg/L are usually associated with nonresponse, whereas those above 450 µg/L seldom lead to an improvement in the efficacy of therapy. As a consequence clomipramine, like the other tricyclics, is an antidepressant with a fairly narrow therapeutic range. This property, combined with a high interindividual variability, makes this class of drugs ideal candidates for blood concentration monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alfredsson G, Wiesel FA, Fyrö B, Sedvall G. Mass fragmentographic analysis of clomipramine and its mono-demethylated metabolite in human plasma. Psychopharmacology 52: 25–30, 1977

    Article  PubMed  CAS  Google Scholar 

  • Allen JJ, Rack PH, Vaddadi KS. Differences in the effects of clomipramine on English and Asian volunteers: preliminary report on a pilot study. Postgraduate Medical Journal 53 (Suppl. 4): 79–85, 1977

    PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE, Balant LP, Garrone G. High blood concentrations of imipramine or clomipramine and therapeutic failure: a case report study using drug monitoring data. Therapeutic Drug Monitoring 11: 415–420, 1989b

    PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE, Balant LP, Genet Ch, Dayer P, Aeschlimann JM, et al. Importance of oxidative polymorphism and levomepromazine treatment on the steady-state blood concentrations of clomipramine and its major metabolites. European Journal of Clinical Pharmacology 31: 449–455, 1986

    Article  PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE, Balant LP, Zysset TH. High plasma concentrations of desmethylclomipramine after chronic administration of clomipramine to a poor metabolizer. European Journal of Clinical Pharmacology 32: 101–102, 1987

    Article  PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE, Gex-Fabry M, Balant LB. Detection of populations at risk using drug monitoring data. In Dahl & Gram (Eds) Clinical pharmacology in psychiatry: from molecular studies to clinical reality, pp. 228–231, Springer-Verlag, Heidelberg, 1989a

    Chapter  Google Scholar 

  • Balant LP, Gundert-Remy U, Boobis AR, von Bahr Ch. Relevance of genetic polymorphism in drug metabolism in the development of new drugs. European Journal of Clinical Pharmcology 36: 551–554, 1989

    Article  CAS  Google Scholar 

  • Balant LP, Roseboom H, Gundert-Remy UM. Pharmacokinetic criteria for drug research and development. In Testa (Ed.) Advances in drug research, Vol. 19, pp. 1–138, Academic Press, London, 1990

    Google Scholar 

  • Bertilsson L. Interethnic differences in drug oxidation polymorphism. In Alvan et al. (Eds) European Consensus Conference on Pharmacogenetics, pp. 171–178, Commission of the European Communities, Luxembourg, 1990

    Google Scholar 

  • Bock JL, Nelson CJ, Gray S, Jatlow PL. Desipramine hydroxylation: variability and effect of antipsychotic drugs. Clinical Pharmacology and Therapeutics 3: 322–328, 1983

    Google Scholar 

  • Boissier JR, Tillement JP, Martin D, Pichot P. Effets de la lévomépromazine sur le métabolisme de l’imipramine chez l’homme. Journal de Pharmacologie Clinique 1 (Suppl. 2): 11–15, 1975

    Google Scholar 

  • Bredesen JK, Ellingsen OF, Kaulsen J. Rapid isothermal gas-liquid chromatographic determination of tricyclic antidepressants in serum with use of a nitrogen-selective detector. Journal of Chromatography 204: 361–367, 1981

    Article  PubMed  CAS  Google Scholar 

  • Broadhurst AD, James HD, Della Corte L, Heely AF. Clomipramine plasma level and clinical response. Graduate Medical Journal 53 (Suppl. 4): 139–145, 1977

    Google Scholar 

  • Brosen K, Gram LF. Clinical significance of the sparteine/debrisoquine oxidation polymorphism. European Journal of Clinical Pharmacology 36: 537–547, 1989

    Article  PubMed  CAS  Google Scholar 

  • Burch JE, Shaw DM, Michalakeas A, Karajgi B, Roberts SG, et al. Time course of plasma drug levels during once-daily oral administration of clomipramine. Psychopharmacology 77: 344–347, 1982

    Article  PubMed  CAS  Google Scholar 

  • Carnis G, Godbillon J, Metayer JP. Determination of clomipramine and desmethylclomipramine in plasma or urine by the double radioisotope derivative technique. Clinical Chemistry 22: 817–823, 1976

    PubMed  CAS  Google Scholar 

  • Ciraulo DA, Alderson LM, Chaproon DJ, Jaffe JH, Bollepalli S, et al. Imipramine disposition in alcoholics. Journal of Clinical Psychopharmacology 2: 2–7, 1982

    Article  PubMed  CAS  Google Scholar 

  • Ciraulo DA, Barnhill JG, Jaffe JH. Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers. Clinical Pharmacology and Therapeutics 43: 509–518, 1988

    Article  PubMed  CAS  Google Scholar 

  • Dawling S, Braithwaite RA. Simplified method for monitoring tricyclic antidepressant therapy using gas-liquid chromatography with nitrogen detection. Journal of Chromatography 146: 449–456, 1978

    Article  PubMed  CAS  Google Scholar 

  • Dawling S, Braithwaite RA, McAuley R, Montgomery SA. Single oral dose pharmacokinetics of clomipramine in depressed patients. Postgraduate Medical Journal 56 (Suppl. 1): 115–116, 1980

    PubMed  Google Scholar 

  • de Cuyper HJA, van Praag HM, Mulder-Hajonides WREM, Westenberg HGM, de Zeeuw RA. Pharmacokinetics of clomipramine in depressive patients. Psychiatry Research 4: 147–156, 1981

    Article  PubMed  Google Scholar 

  • Della Corte L, Broadhurst AD, Sgaragli GP, Filippini S, Heeley AF, et al. Clinical response and tricyclic plasma levels during treatment with clomipramine. British Journal of Psychiatry 134: 390–400, 1979

    Article  PubMed  Google Scholar 

  • de Zeeuw RA, Westenberg HGM, van Praag HM, de Cuyper H. Unusual plasma level oscillations of clomipramine in man: a pharmacokinetic and pharmacodynamic dilemma. Postgraduate Medical Journal 56 (Suppl. 1): 120–126, 1980

    PubMed  Google Scholar 

  • Diquet B, Gaudel G, Colin JN, Singlas E. Dosage plasmatique de la clomipramine et de la déméthylclomipramine par Chromatographie liquide à haute performance. Annales de Biologie Clinique 40: 321–324, 1982

    PubMed  CAS  Google Scholar 

  • Dubois JP, Küng W, Theobald W, Wirz B. Measurement of clomipramine, N-desmethylclomipramine, imipramine, and dehydroimipramine in biological fluids by selective ion monitoring, and pharmacokinetics of clomipramine. Clinical Chemistry 22: 892–897, 1976

    PubMed  CAS  Google Scholar 

  • Evans LEJ, Bett JHN, Cox JR, Dubois JP, van Hees T. The bioavailability of oral and parenteral clomipramine (Anafranil). Progress in Neuro-Psychopharmacology 4: 293–302, 1980

    Article  PubMed  CAS  Google Scholar 

  • Faigle JW, Dieterle W. The metabolism and pharmacokinetics of clomipramine (Anafranil). Journal of International Medical Research 1: 281–290, 1973

    Google Scholar 

  • Favarelli C, Ballerini A, Ambonetti A, Broadhurst AD, Das M. Plasma levels and clinical response during treatment with clomipramine. Journal of Affective Disorders 6: 95–107, 1984

    Article  Google Scholar 

  • Gex-Fabry M, Balant-Gorgia AE, Balant LP, Garrone G. Clomipramine metabolism: model-based analysis of variability factors from drug monitoring data. Clinical Pharmacokinetics 19: 241–255, 1990

    Article  PubMed  CAS  Google Scholar 

  • Gifford LA, Turner P, Pare CMB. Sensitive method for the routine determination of tricyclic antidepressants in plasma using a specific nitrogen detector. Journal of Chromatography 105: 107–113, 1975

    Article  PubMed  CAS  Google Scholar 

  • Godbillon J, Gauron S. Determination of clomipramine or imipramine and their mono-demethylated metabolites in human blood or plasma by high-performance liquid chromatography. Journal of Chromatography 204: 303–311, 1981

    Article  PubMed  CAS  Google Scholar 

  • Gram LF. Effects of perphenazine on imipramine metabolism in man. Psychopharmacology Communications 1: 165–175, 1975

    PubMed  CAS  Google Scholar 

  • Gram LF, Overo KF. Drug interaction inhibitory effect of neuroleptics on metabolism of tricyclic antidepressants in man. British Medical Journal 1: 463–465, 1972

    Article  PubMed  CAS  Google Scholar 

  • Gram LF, Overo KF, Kirk L. Influence of neuroleptics and benzodiazepines on metabolism of tricyclic antidepressants in man. American Journal of Psychiatry 131: 836–866, 1974

    Google Scholar 

  • Gringras M, Luscombe DK, Jones RB, Beaumont G, Seldrup J, et al. A clinical trial of a 50mg formulation of clomipramine (Anafranil) with steady-state plasma level measurements. Journal of International Medical Research 5 (Suppl. 1): 119–124, 1977

    PubMed  CAS  Google Scholar 

  • Gupta RN, Stefanec M, Eng F. Determination of tricyclic antidepressant drugs with the use of a capillary column. Clinical Biochemistry 16: 94–98, 1983

    Article  PubMed  CAS  Google Scholar 

  • Hirschowitz J, Bennett JA, Zemlan FP, Gaiver DL. Thioridazine effect on desipramine plasma levels. Journal of Clinical Psychopharmacology 3: 376–379, 1983

    Article  PubMed  CAS  Google Scholar 

  • Hullin RP. Variation in plasma concentrations of clomipramine and desmethylclomipramine during clomipramine therapy. Postgraduate Medical Journal 56 (Suppl. 1): 117–119, 1980

    PubMed  Google Scholar 

  • John VA, Luscombe DK, Kemp H. Effects of age, cigarette smoking and the oral contraceptive on the pharmacokinetics of clomipramine and its desmethyl metabolite during chronic dosing. Journal of International Medical Research 8 (Suppl. 3): 88–95, 1980

    PubMed  Google Scholar 

  • Jones RB, Luscombe DK. Single dose studies with clomipramine in normal subjects. Postgraduate Medical Journal 52 (Suppl. 3): 62–67, 1976

    PubMed  CAS  Google Scholar 

  • Jones RB, Luscombe DK. Plasma concentrations of clomipramine and its N-desmethyl metabolite in depressive patients following treatment with various dosage regimes of clomipramine. Postgraduate Medical Journal 52 (Suppl. 4): 63–76, 1977

    Google Scholar 

  • Jusko WJ. Influence of cigarette smoking on drug metabolism in man. Drug Metabolism Review 9: 221–228, 1979

    Article  CAS  Google Scholar 

  • Kuss HJ, Jungkunz G. Nonlinear pharmacokinetics of chlorimipramine after infusion and oral administration in patients. Progress in Neuro-Psychopharmacology 10: 739–748, 1986

    Article  CAS  Google Scholar 

  • Lagerström PO, Carlsson I, Persson BA. Determination of chlorimipramine and its demethyl metabolite in plasma by ion-pair partition chromatography. Acta Pharmaceutica Suecica 13: 157–166, 1976

    PubMed  Google Scholar 

  • Lagerström PO, Maule I, Persson BA. Solvent extraction of tricyclic amines from blood plasma and liquid chromatographic determination. Journal of Chromatography 273: 151–160, 1983

    Article  PubMed  Google Scholar 

  • Linnoila M, Insel T, Kilts C, Potter WZ, Murphy DL. Plasma steady-state concentrations of hydroxylated metabolites of clomipramine. Clinical Pharmacology and Therapeutics 32: 208–211, 1982

    Article  PubMed  CAS  Google Scholar 

  • Loga S, Curry S, Lader M. Interaction of chlorpromazine and nortriptyline in patients with schizophrenia. Clinical Pharmacokinetics 6: 454–462, 1981

    Article  PubMed  CAS  Google Scholar 

  • Luscombe DK. Factors influencing plasma drug levels. Journal of International Medical Research 5 (Suppl. 1): 82–97, 1977

    PubMed  CAS  Google Scholar 

  • Luscombe DK. Pharmacokinetics of clomipramine. British Journal of Clinical Practice 3 (Suppl.) 35–50, 1979

    Google Scholar 

  • Martensson E, Axelsson R, Nyberg G, Svensson C. Pharmacokinetic properties of the antidepressant drugs amitriptyline, clomipramine, and imipramine: a clinical study. Current Therapeutic Research 36: 228–238, 1984

    Google Scholar 

  • McTavish D, Benfield P. Clomipramine: an overview of its pharmacological properties and a review of its therapeutic use in obsessive disorder and panic disorder. Drugs 39: 136–153, 1990

    Article  PubMed  CAS  Google Scholar 

  • Mellström B, Eksborg S. Determination of chlorimipramine and desmethyl-chlorimipramine in human plasma by ion-pair partition chromatography. Journal of Chromatography 116: 475–479, 1976

    Article  PubMed  Google Scholar 

  • Mellström B, Tybring G. Ion-pair liquid chromatography of steadystate plasma levels of chlorimipramine and desmethylchlorimipramine. Journal of Chromatography 143: 579–605, 1977

    Google Scholar 

  • Miller P, Luscombe DK, Jones RB, Seldrup J, Beaumont G, et al. Relationships between clinical response, plasma levels and side-effects of clomipramine (Anafranil) in general practitioner trials. Journal of International Medical Research 5 (Suppl. 1): 108–118, 1977

    PubMed  CAS  Google Scholar 

  • Montgomery SA. Measurement of serum drug levels in the assessment of antidepressants. British Journal of Clinical Pharmacology 10: 411–416, 1980

    Article  PubMed  CAS  Google Scholar 

  • Montgomery SA, McAuley R, Montgomery DB, Dawling S, Braithwaite RA. Plasma concentration of clomipramine and desmethylclomipramine and clinical response in depresssed patients. Postgraduate Medical Journal 56 (Suppl. 1): 130–133, 1980

    PubMed  Google Scholar 

  • Moyes ICA, Moyes RB. Some factors affecting the plasma levels of tricyclic antidepressants. Postgraduate Medical Journal 56 (Suppl. 1): 103–106, 1980

    PubMed  CAS  Google Scholar 

  • Moyes ICA, Ray RL, Moyes RB. Plasma levels and clinical improvement: a comparative study of clomipramine and amitriptyline in depression. Postgraduate Medical Journal 56 (Suppl. 1): 127–219, 1980

    PubMed  Google Scholar 

  • Moyes RB, Moyes ICA. Measurement of plasma antidepressant levels by high performance liquid chromatography. Postgraduate Medical Journal 53 (Suppl. 4): 117–123, 1977

    PubMed  CAS  Google Scholar 

  • Nelson JC, Jatlow PL. Neuroleptic effect on desipramine steady-state plasma concentrations. American Journal of Psychiatry 137: 1232–1234, 1980

    PubMed  CAS  Google Scholar 

  • Ninci R, Sgaragli G. Isothermal gas chromatographic determination of nanogram amounts of chlorimipramine, chlorpromazine and their N-desmethyl metabolites in plasma using nitrogen selective detection. Journal of Chromatography 381: 315–322, 1986

    Article  PubMed  CAS  Google Scholar 

  • Norman TR, Maguire KP. Analysis of tricyclic antidepressant drugs in plasma and serum by chromatographic techniques. Journal of Chromatography 340: 173–197, 1985

    Article  PubMed  CAS  Google Scholar 

  • Nyberg G, Martensson E. Quantitative analysis of tricyclic antidepressants in serum from psychiatric patients. Journal of Chromatography 143: 491–497, 1977

    Article  PubMed  CAS  Google Scholar 

  • Ollagnier M, Pellet J, Gay JP, Lang F, Ouvry MC, et al. Phar-macocinétique d’une dose unique de clomipramine en intraveineuse, chez le volontaire sain. Thérapie 39: 237–245, 1984

    PubMed  CAS  Google Scholar 

  • Piollet I, Goyot C, Paire M, Touzery A, Eschalier A, et al. Etude des concentrations plasmatiques de la clomipramine et de son dérivé déméthylé chez l’homme: limites méthodologiques. L’Encéphale 14: 287–292, 1988

    PubMed  CAS  Google Scholar 

  • Read GF, Riad-Fahmy D, Walker RF. A specific radio-immu-noassay procedure for plasma clomipramine. Postgraduate Medical Journal 53 (Suppl. 4): 110–115, 1977

    PubMed  CAS  Google Scholar 

  • Rovei V, Sanjuan M, Hrdina PD. Analysis of tricyclic antidepressant drugs by gas chromatography using nitrogen selective detection with packed and capillary columns. Journal of Chromatography 182: 349–357, 1980

    Article  PubMed  CAS  Google Scholar 

  • Sallee FR, Pollock BG. Clinical pharmacokinetics of imipramine and desipramine. Clinical Pharmacokinetics 18: 346–364, 1990

    Article  PubMed  CAS  Google Scholar 

  • Scoggins BA, Maguire KP, Norman TR, Burrows GD. Measurement of tricyclic antidepressants: Part 1. A review of methodology. Clinical Chemistry 26: 5–17, 1980

    PubMed  CAS  Google Scholar 

  • Sioufi A, Pommier F, Dubois JP. Simultaneous determination of clomipramine and its N-desmethyl metabolite in human whole blood by capillary gas chromatography with mass-selective detection. Journal of Chromatography 428: 71–80, 1988

    Article  PubMed  CAS  Google Scholar 

  • Siris SG, Cooper TB, Rifkin AE, Brenner R, Lieberman JA. Plasma imipramine concentrations in patients receiving concomitant fluphenazine decanoate. American Journal of Psychiatry 139: 104–106, 1982

    PubMed  CAS  Google Scholar 

  • Spreux-Varoquaux O, Morin D, Advenier C, Pays M. Determination of clomipramine and its hydroxylated and demethyl-ated metabolites in plasma and urine by liquid chromatography with electrochemical detection. Journal of Chromatography 416: 311–319, 1987

    Article  PubMed  CAS  Google Scholar 

  • Sutfin TA, D’Ambrosio R, Jusko W. Liquid-chromatographic determination of eight tri- and tetracyclic antidepressants and their major active metabolites. Clinical Chemistry 30: 471–474, 1984

    PubMed  CAS  Google Scholar 

  • Takemura M, Toshida S, Fuchino K. Excretion of clomipramine and desmethylclomipramine in human breast milk. Seishin Igaku 24: 749–753, 1982

    Google Scholar 

  • Träskman L, Åsberg M, Bertilsson L, Cronholm B, Mellström B, et al. Plasma levels of clomipramine and its demethyl metabolite during treatment of depression. Clinical Pharmacology and Therapeutics 26: 600–610, 1979

    PubMed  Google Scholar 

  • Uges DR, Bouma P. Determination of tricyclic antidepressants and some of their metabolites in serum by straight phase HPLC. Pharmaceutisch Weekblad — Scientific Edition 114: 417–424, 1979

    Article  Google Scholar 

  • Vandel B, Vandel S, Jounet JM, Allers G, Volmat R. Relationship between the plasma concentration of clomipramine and desmethylclomipramine in depressive patients and the clinical response. European Journal of Clinical Pharmacology 22: 15–20, 1982

    Article  PubMed  CAS  Google Scholar 

  • Visser T, Oostelbos MCJM, Toll PJMM. Reliable routine method for the determination of antidepressant drugs in plasma by high-performance liquid chromatography. Journal of Chromatography 309: 81–93, 1984

    Article  PubMed  CAS  Google Scholar 

  • Volin P. Therapeutic monitoring of tricyclic antidepressant drugs in plasma or serum by gas chromatography. Clinical Chemistry 27: 1785–1787, 1981

    PubMed  CAS  Google Scholar 

  • Westenberg HGM, de Zeeuw RA, de Cuyper H, van Praag HM, Korf J. Bioanalysis and pharmacokinetics of clomipramine and desmethylclomipramine in man by means of liquid chromatography. Postgraduate Medical Journal 53 (Suppl. 4): 124–130, 1977a

    PubMed  CAS  Google Scholar 

  • Westenberg HGM, Drenth BFH, de Zeeuw RA, de Cuyper H, van Praag HM, et al. Determination of clomipramine and desmethylclomipramine in plasma by means of liquid chromatography. Journal of Chromatography 142: 725–733, 1977b

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balant-Gorgia, A.E., Gex-Fabry, M. & Balant, L.P. Clinical Pharmacokinetics of Clomipramine. Clin. Pharmacokinet. 20, 447–462 (1991). https://doi.org/10.2165/00003088-199120060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199120060-00002

Keywords

Navigation