Skip to main content
Log in

Drug Metabolism by the Human Fetus

  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

A review of the literature that pertains to drug biotransformation in human fetal tissues reveals that, in spite of several publications in this comparatively new area of research, only very limited definitive information is currently available. The large majority of the studies performed have dealt with the cytochrome P-450-dependent microsomal mono-oxygenase systems and for several of the common drug metabolising reactions, very little or no data are available at this time. Some of the more important data that have emerged include observations that important bioactivation reactions can be demonstrated in human fetal tissues obtained during the period of late embryogenesis (high susceptibility to chemical dysmorphogenesis) and that the human fetal adrenal gland possesses considerable capacity to catalyse several important oxidation-reduction reactions.

From the data available to date, it would appear that, in most instances, the biotransformation of drugs in the human embryo and fetus would not affect maternal plasma concentrations significantly. From the viewpoint of parameters of the pharmacokinetics of parent drug (or other xenobiotic) substrates under steady-state conditions, human fetal drug metabolism probably is of little consequence in most cases, although exceptions may exist. Pharmacokinetic parameters observed after isolated exposure, however, are very likely to be affected, perhaps markedly, in some instances.

The demonstrated capacity of human prenatal tissues and cells to generate reactive intermediary metabolites, including those that produce mutations, has attracted the greatest attention recently. This capacity may be associated with extremely important adverse reactions to drugs and other environmental chemicals. Such adverse responses include transplacental mutagenesis, carcinogenesis, dysmorphogenesis, and perhaps several other undesirable effects. Although far from conclusive, the data tend to suggest that humans and subhuman primates may be more vulnerable than the smaller common experimental animals to the toxic effects of foreign organic chemicals during prenatal life. These factors should be weighed whenever exposure of pregnant women to such agents (e.g. via drug administration) is contemplated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackermann, E.: Klinisch-pharmakologische Geischtspunkte der Cytochrom P-450-abhängigen Biotransformation von Arzneimitteln. Pharmazie 38: 400–406 (1978).

    Google Scholar 

  • Ackermann, E. and Richter, K.: Diazepam metabolism in human foetal and adult liver. European Journal, of Clinical Pharmacology 11: 43–49 (1977).

    Article  CAS  Google Scholar 

  • Agathopoulous, A.; Nicolopoulous, D.; Matzaniotis, N. and Papadatos, G.: Biochemical changes of catechol-O-methyl-transferase during development of human liver. Pediatrics 47: 125–128 (1971).

    Google Scholar 

  • Aranda, J.V.; Louridas, A.T.; Vitullo, B.B.; Thom, P.; Aldridge, A. and Haber, R.: Metabolism of theophylline to caffeine in human fetal liver. Science 206: 1319–1321 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Ball, P. and Knuppen, R.: Formation of 2-hydroxyestrogens and 4-hydroxyestrogens by brain, pituitary and liver of human fetus. Journal of Clinical Endocrinology and Metabolism 47: 732–737 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Baranova, L.N. and Aleksandrov, V.A.: Pattern of transplacental penetration of 7,12-dimethylbenz[a]anthracene and its distribution in the fetal organs in man. Bulletin of Experimental Biology and Medicine 86: 1376–1379 (1979).

    Article  Google Scholar 

  • Bend, J.R.; James, M.O.; Devereux, T.R. and Fouts, J.R.: Toxication-detoxication systems in hepatic and extrahepatic tissues in the perinatal period; in Morselli, Garattini, and Sereni (Eds) Basic and Therapeutic Aspects of Perinatal Pharmacology, p. 229–244 (Raven Press, New York 1975).

    Google Scholar 

  • Berry, D.L.; Zachariah, P.K.; Slaga, T.J. and Juchau, M.R.: Analysis of the biotransformation of benzo[a]pyrene in human fetal and placental tissues with high pressure liquid chromatography. European Journal of Cancer 13: 667–675 (1977).

    PubMed  CAS  Google Scholar 

  • Bond, J.A.; Kocan, R.M.; Benditt, E.P. and Juchau, M.R.: Metabolism of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene in cultured human fetal aortic cells. Life Sciences 25: 425–430 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Bory, C.; Baltassat, P.; Porhault, M.; Berthenod, M.; Frederich, A. and Aranda, J.V.: Metabolism of theophylline to caffeine in premature newborn infants. Journal of Pediatrics 94: 988–992 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Brooks, L.G. and Forrest, I.S.: Intraspecies variation in chlorpromazine metabolism. Research Communications in Chemical Pathology and Pharmacology 5: 741–757 (1973).

    Google Scholar 

  • Burchell, B.: UDP-Glucuronyltransferase activity towards estriol in fresh and cultured fetal tissues from man and other species. Journal of Steroid Biochemistry 5: 261–267 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Chao, S.T.; Omiecinski, C.J.; Namkung, M.J.; Nelson, S.D.; Dvorchik, B.H. and Juchau, M.R.: Catechol estrogen formation in placental and fetal tissues of humans, macaques, rats, and rabbits. Developmental Pharmacology and Therapeutics. In press (1980).

  • Chasseaud, L.F.: Distribution of enzymes that catalyze reactions of glutathione with α, β-unsaturated compounds. Biochemical Journal 131: 765–769 (1973).

    PubMed  CAS  Google Scholar 

  • Connors, T.A.: Bioactivation and cytotoxicity; in Bridges and Chasseaud (Eds) Progress in Drug Metabolism, Vol. 1, p. 41–76 (John Wiley and Sons, London 1976).

    Google Scholar 

  • Drayer, D.E.; Reidenberg, MM. and Sevy, R.W.: N-acetylpro-cainamide: An active metabolite of procainamide. Proceedings of the Society for Experimental Biology and Medicine 146: 358–363 (1974).

    PubMed  CAS  Google Scholar 

  • Dutton, G.J.: Glucuronide synthesis in fetal liver and other tissues. Biochemical Journal 71: 141–148 (1959).

    PubMed  CAS  Google Scholar 

  • Dutton, G.J.: The biosynthesis of glucuronides; in Dutton (Ed) Glucuronic Acid, Free and Combined, p. 186–287 (Academic Press, New York 1966).

    Google Scholar 

  • Dutton, G.J.: Developmental studies on some enzyme activities associated with ‘detoxication’. Enzyme 15: 304–317 (1973).

    PubMed  CAS  Google Scholar 

  • Dutton, G.J.: Developmental aspects of drug conjugation, with special reference to glucuronidation. Annual Review of Pharmacology and Toxicology 18: 17–35 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Dvorchik, B.H.; Stenger, V.G. and Hartmann, R.D.: Drug metabolism by the fetal stump-tailed monkey (Macaca arctoides). Hepatic microsomal N-demethylation and glucuronidation as measured by radiometric assays. Pharmacology 18: 241–250 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Ecobichon, D.J. and Stephens, D.S.: Perinatal development of human blood esterases. Clinical Pharmacology and Therapeutics 14: 41–47 (1973).

    PubMed  CAS  Google Scholar 

  • Egger, H.J.; Wittfoht, W. and Nau, H.: Metabolism of di-phenylhydantoin in isolated hepatocytes and liver organ cultures of the human fetus; in Neubert. Merker, Nau and Langman (Eds) Role of Pharmacokinetics in Prenatal and Perinatal Toxicology, p. 109–122 (Georg Thieme Publishers, Stuttgart 1978).

    Google Scholar 

  • Fantel, A.G.; Greenaway, J.C.; Shepard, T.H. and Juchau, M.R.: Cytochrome P-450-dependent teratogenic action of cyclophosphamide. Federation Proceedings 38: 437 (1979a).

    Google Scholar 

  • Fantel, A.G.; Greenaway, J.C.; Juchau, M.R. and Shepard, T.H.: Teratogenic bioactivation of cyclophosphamide in vitro. Life Sciences 25: 67–72 (1979b).

    Article  PubMed  CAS  Google Scholar 

  • Fantel, A.G.; Greenaway, J.C.; Shepard, T.H. and Juchau, M.R.: Cytochrome P-450-dependent teratogenic activity of cyclophosphamide in vitro. Teratology 19: 25A (1979c).

    Google Scholar 

  • Felsher, B.F.; Maidman, J.E.; Carpio, N.M.; Vancouvering, K. and Wooley, M.M.:. Reduced hepatic bilirubin uridine diphosphate glucuronyl transferase and uridine diphosphate glucose dihydrogenase activity in human fetus. Pediatric Research 12: 838–840 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Fichter, E.G. and Curtis, JA.: Sulfonamide administration in newborn and premature infants. Pediatrica 18: 50–57 (1956).

    CAS  Google Scholar 

  • Fouts, J.R. and Adamson, R.H.: Drug metabolism in the newborn rabbit. Science 129: 897–898 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Gärtner, U. and Ryden, G.: The elimination of alcohol in the premature infant. Acta Paediatrica Scandinavica 61: 720–722 (1972).

    Article  PubMed  Google Scholar 

  • Gillette, J.R.: Active products of fetal drug metabolism. Clinical Pharmacology and Therapeutics 14: 680–692 (1973).

    PubMed  CAS  Google Scholar 

  • Gillette, J.R.: Factors that affect drug concentrations in maternal plasma; in Wilson and Fraser (Eds) Handbook of Teratology, Vol. 3, p. 35–78 (Plenum Press, New York 1977).

    Google Scholar 

  • Gillette, J.R.: Prenatal development of drug metabolism; in Estabrook and Lindelaub (Eds) The Induction of Drug Metabolism, p. 501–506 (F.K. Schattauer Verlag, Stuttgart 1979).

    Google Scholar 

  • Gillette, J.R. and Stripp, B.: Pre- and postnatal enzyme capacity for drug metabolic production. Federation Proceedings 34: 172–179 (1975).

    PubMed  CAS  Google Scholar 

  • Grimmer, I.; Moller, R.; Gmyrek, D. and Gross, J.: Bilirubin UDP-glucuronyltransferase activity in liver homogenates of human fetuses. Acta Biologica et Medica Germanica 37: 131–135 (1978).

    PubMed  CAS  Google Scholar 

  • Guldbert, H.C. and Marsden, C.A.: Catechol-O-methyltrans-ferase: Pharmacologic aspects and physiological role. Pharmacological Reviews 27: 135–206 (1975).

    Google Scholar 

  • Hirvonen, T.: Fetal and postnatal development of glucuronide formation in mammalian tissue slices. Sarja-Series All, Biologica-Geographica, Turku (1966).

  • Idanpaan-Heikkila, J.E.; Jouppila, P.I.; Poulakka, J.O. and Vorne, M.S.: Placental transfer and fetal metabolism of diazepam in early human pregnancy. American Journal of Obstetrics and Gynecology 109: 1011–1016 (1971).

    PubMed  CAS  Google Scholar 

  • Irjala, K.: Synthesis of p-aminohippuric, hippuric and salicyluric acids in experimental animals and man. Annales Academica Scientifica Fenniae, Series A, 5 Medica 154: 1–40 (1972).

    CAS  Google Scholar 

  • Ivankovic, S.; Schmahl, D. and Zeiler, W.J.: N-Demethylierung des Carcinogens Dimethylnitrosamin durch embryonales menschlisches Gewebe. Zeitschrift fur Krebsforschung 81: 269–272 (1974).

    Article  CAS  Google Scholar 

  • Jondorf, W.R.: Developmental aspects of the metabolism and toxicity of drugs; in Gorrod (Ed) Drug Toxicity, p: 25–50 (Taylor and Francis, London 1979).

    Google Scholar 

  • Jondorf, W.R.; Maickel, R.P. and Brodie, B.B.: Inability of newborn mice and guinea pigs to metabolize drugs. Biochemical Pharmacology 1: 353–358 (1959).

    Google Scholar 

  • Jones, A.H.; Fantel, A.G.; Kocan, R.A. and Juchau, M.R.: Bioactivation of procarcinogens to mutagens in human fetal and placental tissues. Life Sciences 21: 1831–1837 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Jones, J.B.; Papadaki, L. and Hubbard, J.: Monoamine oxidase activity in the fetal lung and liver. British Journal of Obstetrics and Gynaecology 83: 464–469 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Juchau, M.R.; Niwsander, K.R. and Yaffe, S.J.: Drug metabolizing systems in homogenates of human immature placentas. American Journal of Obstetrics and Gynecology 100: 348–356 (1968).

    PubMed  CAS  Google Scholar 

  • Juchau, M.R.: Nitro-reduction in tissues of the human fetus and placenta. Pharmacologist 12: 296 (1970).

    Google Scholar 

  • Juchau, M.R.: Drug biotransformation in the human fetus: Nitro group reduction. Archives Internationales de Pharmacodynamic et de Therapie 194. 204–216 (1971a).

    Google Scholar 

  • Juchau, M.R.: Human placental hydroxylation of 3,4-benzpyrene during early gestation and at term. Toxicology and Applied Pharmacology 18: 665–675 (1971b).

    Article  PubMed  CAS  Google Scholar 

  • Juchau, M.R. and Symms, K.G.: Drug biotransformation in tissues of the human fetus. Fifth International Congress of Pharmacology, Abstracts, p. 117 (1972).

  • Juchau, M.R.; Pedersen, M.G. and Symms, K.G.: Hydroxylation of 3,4-benzpyrene in human fetal tissue homogenates. Biochemical Pharmacology 21: 2269–2272 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Juchau, M.R. and Pedersen, M.G.: Drug biotransformation in the human fetal adrenal gland. Life Sciences II. Biochemistry, General and Molecular Biology 12: 193–204 (1973).

    PubMed  CAS  Google Scholar 

  • Juchau, M.R.; Lcc, Q.H.; Louviaux, G.L.: Symms, K.G.; Krasner, J. and Yaffe, S.J.: Oxidation and reduction of foreign compounds in tissues of the human placenta and fetus; in Boreus (Ed) Fetal Pharmacology, p. 321–335 (Raven Press, New York 1973).

    Google Scholar 

  • Juchau, M.R. and Namkung, M.J.: Studies on the biotransformation of naphthalene-1,2-oxide in fetal and placental tissues of humans and monkeys. Drug Metabolism and Disposition 2: 380–386 (1974).

    PubMed  CAS  Google Scholar 

  • Juchau, M.R.: Metabolic capabilities of the human fetus: Drug biotransformation. International Journal of Addictive Diseases 2: 37–43 (1975).

    CAS  Google Scholar 

  • Juchau, M.R.; Namkung, M.J.; Berry, D.L. and Zachariah, P.K.: Oxidative biotransformation of 2-acetylaminofluorene in fetal and placenta! tissues of humans and monkeys: Correlations with aryl hydrocarbon hydroxylase activities. Drug Metabolism and Disposition 3: 494–502 (1975).

    CAS  Google Scholar 

  • Juchau, M.R.; Berry, D.L.; Zachariah, P.K.; Namkung, M.J. and Slaga, T.J.: Prenatal biotransformation of benzo[a]pyrene and N-2-fluorenylacetamide in human and subhuman primates; in Freudenthal and Jones (Eds) Carcinogenesis: Polynuclear Aromatic Hydrocarbons, Vol. 1, p. 23–35 (Raven Press, New York 1976).

    Google Scholar 

  • Juchau, M.R.; Namkung, M.J.; Jones, A.H. and Di Giovanni, J.: Biotransformation and bioactivation of 7,12-dimethyl-benz[a]anthracene in human fetal and placental tissues. Drug Metabolism and Disposition 6: 273–281 (1978a).

    PubMed  CAS  Google Scholar 

  • Juchau, M.R.; Jones, A.H.; Namkung, M.J. and Di Giovanni, J.: Extrahepatic bioactivation of 7,12-dimethylbenz[a]anthracene and benzotabyrene in human fetal tissues; in Freudenthal and Jones (Eds) Carcinogenesis: Polynuclear Aromatic Hydrocarbons, Vol. 3, p. 361–370 (Raven Press, New York 1978b).

    Google Scholar 

  • Juchau, M.R.; Di Giovanni, J.; Namkung, M.J. and Jones, A.H.: A comparison of the capacity of fetai and adult liver, lung and brain to convert polycyclic aromatic hydrocarbons to mutagenic and cytotoxic metabolites in mice and rats. Toxicology and Applied Pharmacology 49: 171–178 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Juchau, M.R.: Enzymatic bioactivation and inactivation of chemical teratogens and transplacental carcinogens and mutagens; in Juchau (Ed) The Biochemical Basis of Chemical Teratogenesis. In press (Elsevier Press, New York 1980a).

    Google Scholar 

  • Juchau, M.R.: Drug biotransformation in the placenta. Pharmacology and Therapeutics. In press (1980b).

  • Juchau, M.R.: Extrahepatic drug metabolism: The placenta; in Gram, Vessell and Garattini (Eds) Monographs in Drug Metabolism: Extrahepatic Metabolism. In press (Spectrum Publications, Inc., Holliswood, NY 1980c).

  • Kamataki, T.; Kitada, M. and Kitagawa, H.: Difference in substrate specificities of drug metabolizing enzymes in human term placenta and fetal liver. Chemical and Pharmaceutical Bulletin 21: 2329–2331 (1973).

    Article  CAS  Google Scholar 

  • Kato, R.: Mixed-function oxidases in different species. Pharmacology and Therapeutics 6: 41–98 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Kitada, M. and Kamataki, T.: Partial purification and properties of cytochrome P-450 from homogenates of human fetal livers. Biochemical Pharmacology 28: 793–798 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Kuhnen, B.R.; Knapp, D.R.; Kuhnert, P.M. and Prochaska, A.L.: Maternal, fetal, and neonatal metabolism of lidocaine. Clinical Pharmacology and Therapeutics 26: 213–220 (1979).

    Google Scholar 

  • Leakey, J.E.A. and Fouts, J.R.: Precocious development of cytochrome P-450 in neonatal rat liver after glucocorticoid treatment. Biochemical Journal 182: 233–235 (1979).

    PubMed  CAS  Google Scholar 

  • Levy, C.: Salicylate pharmacokinetics in the human neonate; in Morselli, Garattini and Sereni (Eds) Basic and Therapeutic Aspects of Perinatal Pharmacology, p. 319–330 (Raven Press, New York 1975).

    Google Scholar 

  • Liddiard, C.; Brendel, K. and Nau, H.: Drug metabolism in cultures of isolated hepatocytes of the human fetus, neonatal pig and adult rat; in Neubert, Merker, Nau and Langman (Eds) Role of Pharmacokinetics in Prenatal and Perinatal Toxicology, p. 91–108 (George Thieme Publishers, Stuttgart 1978).

    Google Scholar 

  • Monder, C. and Coufalik, A.H.: Changes in the properties of fetal rat liver during organ culture. In Vitro 15: 579–586 (1979).

    PubMed  CAS  Google Scholar 

  • Namkung, M.J.; Zachariah, P.K. and Juchau, M.R.: O-Sulfonation of N-hydroxy-2-fluorenylacetamide and 7-hydroxy-N-2-fluorenylacetamide in fetal and placental tissues of humans and guinea pigs. Drug Metabolism and Disposition 5: 288–294 (1977).

    PubMed  CAS  Google Scholar 

  • Nau, H.; Liddiard, C.; Brendel, K.; Wittfoht, W. and Lange, J.: Benzodiazepine metabolism studies in organ and isolated cell cultures of human liver by a GC-MS-computer system; in Eggstein and Liebich (Eds) Mass Spectrometry and Combined Technique in Medicine, Clinical Chemistry and Clinical Biochemistry, p. 346–358 (Tubingen 1977).

    Google Scholar 

  • Nau, H.; Liddiard, C.; Bass, R.; Lange, J. and Haase, V.: Der diaplazentare Ubergang sowie der fetale Metabolisimus von Pharmaka in der ersten Halfte der menschlischen Schwangerschaft; in Schneider, Stille and Grosdanoff (Eds) Embryotoxicologische Probleme in der Arzneimittel-Forschung, p. 89–96 (Dietrich Reimer Verlag, Berlin 1978a).

    Google Scholar 

  • Nau, H.; Liddiard, C.; Merker, HJ. and Brendel, K.: Preparation, morphology and drug metabolism of isolated hepatocyte and liver organ cultures from the human fetus. Life Sciences 23: 2361–2372 (1978b).

    Article  PubMed  CAS  Google Scholar 

  • Nau, H. and Neubert, D.: Development of drug-metabolizing monooxygenase systems in various mammalian species including man. Its significance for transplacental toxicity; in Neubert, Merker, Nau and Langman (Eds) Role of Pharmacokinetics in Prenatal and Perinatal Toxicology, p. 13–45 (Georg Thieme Publishers, Stuttgart 1978).

    Google Scholar 

  • Nau, H.; Brendel, K. and Liddiard, C.: Benzodiazepine metabolism in cultures of isolated hepatocytes and liver fragments of human fetus. Drug Metabolism Reviews 9: 131–146 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Negishi, M. and Kreibich, G.: Coordinated polypeptide synthesis and insertion of protoheme into cytochrome P-450 during development of endoplasmic reticulum membranes. Journal of Biological Chemistry 253: 4791–4797 (1978).

    PubMed  CAS  Google Scholar 

  • Neims, A.H.; Warner, M.; Loughnan, P.M. and Aranda, J.V.: Developmental aspects of the hepatic cytochrome P-450 monooxygenase system. Annual Review of Pharmacology and Toxicology 16: 427–445 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Netter, K.J.: Arzneimittelaufnahme und-abbau Wahrend der Fetalperiode. Archiven der Gynakologie 211: 112–133 (1971).

    Article  CAS  Google Scholar 

  • Oesch, F.: Transplacental control of epoxide-forming and inactivating enzymes of rat fetal liver by clinically used drugs and by environmental chemicals; in Morselli, Garattini and Sereni (Eds) Basic and Therapeutic Aspects of Perinatal Pharmacology, p. 53–64 (Raven Press, New York 1975).

    Google Scholar 

  • Omiecinski, C.J.; Chao, S.T. and Juchau, M.R.: Modulation of monooxygenase activities by hematin and 7,8-benzoflavone in fetal tissues of rats, rabbits and humans. Developmental Pharmacology and Therapeutics 1: 90–100 (1980).

    PubMed  CAS  Google Scholar 

  • Pasqualini, J.R.: Metabolic conjugation and hydrolysis of steroid hormones in the fetoplacental unit; in Fishman (Ed) Metabolic Conjugation and Metabolic Hydrolysis, p. 153–259 (Academic Press, New York 1970).

    Chapter  Google Scholar 

  • Pelkonen, O.: Activity and inducibility of drug-metabolizing enzymes in the human fetus and placenta; in Neubert, Merker, Nau and Langman (Eds) Role of Pharmacokinetics in Prenatal and Perinatal Toxicology, p.57–69 (Georg Thieme Publishers, Stuttgart 1978).

    Google Scholar 

  • Pelkonen, O.: Prenatal and neonatal development of drug and carcinogen metabolism; in Estabrook and Lindelaub (Eds) The Induction of Drug Metabolism, p. 507–516 (F.K. Schattauer Verlag, Stuttgart 1979).

    Google Scholar 

  • Pelkonen, O.; Vorne, M.; Jouppila, P. and Kärki, N.T.: Metabolism of chlorpromazine and p-nitrobenzoic acid in the liver, intestine and kidney of the human foetus. Acta Pharmacologic and Toxicologica 29: 284–294 (1971a).

    Article  CAS  Google Scholar 

  • Pelkonen, O.; Arvela, P. and Kärki, N.T.: 3,4-Benzypyrene and N-methylaniline metabolizing enzymes in the immature human foetus and placenta. Acta Pharmacologica et Tox-icologica 30: 385–395 (1971b).

    Article  CAS  Google Scholar 

  • Pelkonen, O. and Kärki, N.T.: Drug metabolism in human fetal tissues. Life Sciences 13: 1163–1180 (1973a).

    Article  CAS  Google Scholar 

  • Pelkonen, O. and Kärki, N.T.: 3,4-Benzpyrene and aniline are hydroxylated by human fetal liver but not by placenta at 6–7 weeks of fetal age. Biochemical Pharmacology 22: 1538–1540 (1973b).

    Article  PubMed  CAS  Google Scholar 

  • Pelkonen, O.; Korhonen, P.; Jouppila, P. and Kärki, N.T.: Placental transfer and fetal metabolism of drugs; in Morselli, Garattini and Sereni (Eds) Basic and Therapeutic Aspects of Perinatal Pharmacology, p. 65–74 (Raven Press, New York 1975).

    Google Scholar 

  • Pelkonen, O.: Metabolism of benzo[a]pyrene in human adult and fetal tissues; in Freudenthal and Jones (Eds) Carcinogenesis: Polynuclear Aromatic Hydrocarbons, Vol. 1, p. 9–22 (Raven Press, New York 1976).

    Google Scholar 

  • Pelkonen, O.: Formation of toxic intermediates in fetal tissues; in Jallow, Kocsis, Snyder and Vainio (Eds) Biological Reactive Intermediates, p. 148–159 (Plenum Press, New York 1977a).

    Chapter  Google Scholar 

  • Pelkonen, O.: Transplacental transfer of foreign compounds and their metabolism by the fetus, in Bridges and Chasseaud (Eds) Progress in Drug Metabolism, Vol. 2, p. 119–161 (John Wiley, New York 1977b).

    Google Scholar 

  • Pelkonen, O.: Differential inhibition of aryl hydrocarbon hydroxylase in human fetal liver, adrenal gland and placenta. Acta Pharmacologica et Toxicologica 41: 306–316 (1977c).

    Article  PubMed  CAS  Google Scholar 

  • Pelkonen. O.; Kärki, N.T.; Korhonen, P.; Koivisto, M.; Tuimala, R. and Kauppila, A.; Inducibility of monooxygenase activities in the human fetus and placenta; in Olive (Ed) Advances in Pharmacology and Therapeutics, p. 101–111 (Pergamon Press, Oxford 1978).

    Google Scholar 

  • Piafsky, K.M. and Rane, A.: Formation of carbamazepine epoxide in human fetal liver. Drug Metabolism and Disposition 6: 502–503 (1978).

    PubMed  CAS  Google Scholar 

  • Pikkarainen, P.H. and Räihä, N.C.R.: Development of alcholol dehydrogenase activity in the human liver. Pediatric Research 1: 165–173 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Pikkarainen, P. and Räihä, N.C.: Change in alcohol dehydrogenase isoenzyme pattern during development of human liver. Nature (London) 222: 563–564 (1969).

    Article  CAS  Google Scholar 

  • Pikkarainen, P.H.: Aldehyde-oxidizing capacity during development in human and rat liver. Annals Medicinae Experimentalis et Biologiae Fenniae 49: 151–156 (1971).

    CAS  Google Scholar 

  • Plasse, J.C. and Lisboa, B.P.: Studies on the metabolism of steroids in the foetus. European Journal of Biochemistry 39: 443–447 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Pomp, H.; Schnoor, M. and Netter, K.J.: Untersuchungen uber die Arzneimitteldemethylieung in der fetalen Leber. Deutsche Medizinische Wochenschrift 94: 1232–1240 (1969).

    Article  PubMed  Google Scholar 

  • Poulsen, L.L. and Ziegler, D.M.. The liver microsomal FAD-containing monooxygenase. Journal of Biological Chemistry 254: 6449–6455 (1979).

    PubMed  CAS  Google Scholar 

  • Rane, A.: Drug metabolism in the human fetus and newborn infant. Academic Thesis, p. 26 (Stockholm. 1973).

  • Rane, A. and Ackermann E.: Metabolism of ethylmorphine and aniline in human fetal liver. Clinical Pharmacology and Therapeutics 13: 663–670 (1972).

    PubMed  CAS  Google Scholar 

  • Rane, A. and Sjöqvist, F.: Drug metabolism in the human fetus and newborn infant. Pediatric clinics of North America 19: 37–49 (1972).

    PubMed  CAS  Google Scholar 

  • Rane, A.; Sjöqvist, F. and Orrenius, S.: Drugs and fetal metabolism. Clinical Pharmacology and Therapeutics 14: 666–672 (1973a).

    PubMed  CAS  Google Scholar 

  • Rane, A.; von Bahr, C.; Orrenius, S. and Sjöqvist, F.: Drug metabolism in the human fetus; in Boreus (Ed) Fetal Pharmacology, p.287–301 (Raven Press. New York 1973b).

    Google Scholar 

  • Rifkind, A.B.; Bennet S.; Forster, E.S. and New, M.I.: Components of the heme biosynthetic pathway and mixed-function oxidase activity in human fetal tissues. Biochemical Pharmacology 24: 839–846 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Rollins. D.E.; von Bahr. C. Glaurnann, H.; Moideus. P. and Rane. A.: Actaminophen: Potentially toxic metabolite formed by human fetal and adult liver microsomes and isolated fetal liver cells. Science 205: 1414–1416 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Sereni, F.; Mandelli, M.; Principi, N.; Tognoni, G.; Pardi, G. and Morselli, P.L.: Induction of drug metabolizing enzyme activities in the human fetus and in the newborn. Enzyme 15: 318–327 (1973).

    PubMed  CAS  Google Scholar 

  • Short, C.R.; Maines, M.D. and Westfall. B.A.: Postnatal development of drug-metabolising enzyme activity in liver and ex-trahepatic tissues of swine. Biology of the Neonate 21: 54–68 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Short. C.R.; Kinden. D.A. and Stith, R.: Fetal and neonatal development of the microsomal monooxygenase system. Drug Metabolism Reviews 5: 1–42 (1976).

    Article  CAS  Google Scholar 

  • Stevenson, I.H. and Dutton, G.J.: Glucuronide synthesis in kidney and gastrointestinal tract. Biochemical Journal 82: 330–340 (1962).

    PubMed  CAS  Google Scholar 

  • Taylor. I.M.: Esterases in the hearts, lungs, and livers of human foetuses before midterm. Experientia 28: 560–563 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Uehleke. H.; Reiner, O. and Hellmer, K.H.: Perinatal development of tertiary amine N-oxidation and NADPH-cytochrome c reduction in rat liver microsomes. Research Communications in Chemical Pathology and Pharmacology 2: 793–805 (1971).

    PubMed  CAS  Google Scholar 

  • Vest, M.: Studien zur Entwicklung des Glukuronidbildungs-vermögens der Leber beim Neugeborenen; das Verhalten des Aminophenol-Glukuronids im Blut nach Verabreichung von Acetanild. Schweizerische Medizinische Wochenschrift 89: 102–107 (1959).

    PubMed  CAS  Google Scholar 

  • von Bahr, C.; Rane. A.; Orrenius. S. and Sjöqvist, F.: Metabolism of desmethylimipramine in human foetal and adult liver microsomes. Acta Pharmacologica et Toxicologica 34: 58–64 (1974).

    Article  Google Scholar 

  • Waddell, W.J. and Marlowe. C.G.: Disposition of drugs in the fetus; in Mirkin (Ed) Perinatal Pharmacology and Therapeutics, p. 119–254 (Academic Press, New York 1976).

    Google Scholar 

  • Weiss, C.F.; Glazko, A.J. and Weston, J.K.: Chloramphenicol in the newborn infant: A physiologic explanation of its toxicity when given in excessive doses. New England Journal of Medicine 262: 787–791 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Wengle, B.: Distribution of some steroid sulphokinases in foetal human tissues. Acta Endocrinologica Copenhagen 52: 607–618 (1966).

    CAS  Google Scholar 

  • Wirth. P.J. and Thorgeirson, S.S.: Amine oxidases in mice — sex differences and developmental aspects. Biochemical Pharmacology 27: 601–610 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Wishart. G.J. and Dutton, G.J.: Induction by natural and xenobiotic compounds of UDP-glucuronyltransferase activities during the perinatal period; in Neubert. Merker, Nau and Langman (Eds) Role of Pharmacokinetics in Prenatal and Perinatal Toxicology, p. 215–224 (Georg Thieme Publishers, Stuttgart 1978).

    Google Scholar 

  • Yaffe, S.J.; Rane, A.; Sjöqvist, F.; Boreus, L.O. and Orrenius, S.: The presence of a monooxygenase system in human fetal liver microsomes. Life Sciences (Part II) 9: 1189–1200 (1970).

    CAS  Google Scholar 

  • Yaffe, S.J. and Juchau, M.R.: Perinatal pharmacology. Annual Review of Pharmacology 14: 219–238 (1974).

    Article  CAS  Google Scholar 

  • Zachariah, P.K. and Juchau, M.R.: Role of the gut flora in the reduction of aromatic nitro groups. Drug Metabolism and Disposition 2: 74–78 (1974).

    PubMed  CAS  Google Scholar 

  • Zachariah, P.K. and Juchau, M.R.: Spectral characteristics of human fetal adrenal microsomes. Life Sciences 16: 55–63 (1975).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juchau, M.R., Chao, S.T. & Omiecinski, C.J. Drug Metabolism by the Human Fetus. Clin Pharmacokinet 5, 320–339 (1980). https://doi.org/10.2165/00003088-198005040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198005040-00002

Keywords

Navigation