Skip to main content
Log in

Comparative Tolerability Profiles of Oral Antidiabetic Agents

  • Review Articles
  • Drug Experience
  • Published:
Drug Safety Aims and scope Submit manuscript

Summary

The sulphonylureas and the biguanides are widely used as adjuncts to dietary measures in the treatment of non-insulin-dependent (type 2) diabetes mellitus (NIDDM). Adverse effect profiles differ markedly between the sulphonylureas and biguanides, reflecting differences in chemical structure and mode of action. Sulphonylureas are generally well tolerated, although pharmacokinetic differences between these agents have important clinical implications. The main adverse effect associated with sulphonylureas is hypoglycaemia. This effect is a predictable consequence of the principal pharmacological effect of these drugs, i.e. sensitisation of the islet β-cell to glucose, resulting in enhanced endogenous insulin secretion. Sulphonylurea-induced suppression of hepatic glucose production may cause profound and protracted hypoglycaemia, especially in elderly patients, in individuals with intercurrent illnesses and reduced caloric intake, or when taken in combination with other compounds with hypoglycaemic potential, e.g. alcohol (ethanol). Sulphonylureas with a longer duration of action, notably chlorpropamide and glibenclamide (glyburide), are more liable to induce serious hypoglycaemia, particularly when drug elimination is reduced by renal impairment. Other drugs such as salicylates may potentiate the actions of sulphonylureas, thereby increasing the risk of hypoglycaemia.

Biguanide therapy is associated with alterations in lactate homeostasis which under certain clinical circumstances may result in fatal lactic acidosis. Phen-formin is associated with a markedly greater risk of lactic acidosis than metformin. Phenformin has been withdrawn in many countries for this reason. All biguanides must be avoided in patients with renal impairment, hepatic dysfunction and cardiac failure — conditions where drug accumulation or disordered lactate metabolism may predispose to lactic acidosis. Phenformin should not be given to individuals who exhibit a severe, genetically conferred hepatic defect of hydroxylation which impedes metabolism of this drug. Less seriously, the biguanides are associated with a relatively high incidence of gastrointestinal adverse effects which limit compliance.

Acarbose, a competitive inhibitor of intestinal α-glucosidases, has recently been introduced. In contrast to the sulphonylureas and biguanides, acarbose has not been associated with life-threatening adverse effects. This reflects the low systemic absorption of the drug and, predictably, its principal unwanted effects are gastrointestinal disturbances resulting from iatrogenic carbohydrate malabsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zimmet P. Type 2 (non-insulin-dependent) diabetes — an epide-miological overview. Diabetologia 1982; 22: 399–411

    PubMed  CAS  Google Scholar 

  2. Singh BM, Rutter JD, FitzGerald MG. The natural history of non-insulin-dependent diabetes mellitus. Baillieres Clin En-docrinol Metab 1988; 2: 343–58

    CAS  Google Scholar 

  3. Yki-Järvinen H. Pathogenesis of non-insulin-dependent diabetes mellitus. Lancet 1994; 343: 91–5

    PubMed  Google Scholar 

  4. Williams G. Management of non-insulin-dependent diabetes mellitus. Lancet 1994; 343: 95–100

    PubMed  CAS  Google Scholar 

  5. Alberti KGMM, Gries FA. Management of non-insulin-de-pendent diabetes in Europe: a consensus view. Diabetic Med 1988; 5: 275–81

    PubMed  CAS  Google Scholar 

  6. UK prospective study of therapies of maturity-onset diabetes. 1. Effects of diet, sulphonylurea, insulin or biguanide therapy on fasting plasma glucose and body weight over one year. Diabetologia 1983; 24: 404–11

    Google Scholar 

  7. Groop LC. Sulfonylureas in NIDDM. Diabetes Care 1992; 15: 737–54

    PubMed  CAS  Google Scholar 

  8. Nattrass M. Treatment of type II diabetes. BMJ 1986; 292: 1033–4

    PubMed  CAS  Google Scholar 

  9. Pugh JA, Ramirez G, Wagner ML, et al. Is combination sulfonylurea and insulin therapy useful in NIDDM patients? A meta-analysis. Diabetes Care 1992; 15: 953–9

    PubMed  CAS  Google Scholar 

  10. Kilo C, Miller JP, Williamson JR. The crux of the University Group Diabetes Program. Spurious results and biologically inappropriate data analysis. Diabetologia 1980; 18: 179–85

    PubMed  CAS  Google Scholar 

  11. Bailey CJ. Hypoglycaemic, antihyperglycaemic and antidiabetic drugs. Diabetic Med 1992; 9: 482–3

    PubMed  CAS  Google Scholar 

  12. Williams G, Pickup JC. New drugs in the management of diabetes mellitus. In: Williams G, Pickup JC, editors. Textbook of diabetes. Oxford: Blackwell Scientific, 1991: 977–93

    Google Scholar 

  13. Ferner RE, Chaplin S. The relationship between the pharmacokinetics and pharmacodynamic effects of oral hypoglycaemic drugs. Clin Pharmacokinet 1987; 12: 379–401

    PubMed  CAS  Google Scholar 

  14. Henquin J-C. The fiftieth anniversary of hypoglycaemic sul-phonamides. How did the mother compound work? Diabetologia 1992; 35: 907–12

    PubMed  CAS  Google Scholar 

  15. Melander A, Bitzen P-O, Faber O, et al. Sulphonylurea antidiabetic drugs. An update of their clinical pharmacology and rational therapeutic use. Drugs 1989; 37: 58–72

    PubMed  CAS  Google Scholar 

  16. Ferner RE, Alberti KGMM. Sulphonylureas in the treatment of non-insulin-dependent diabetes. Q J Med 1989; 271: 987–95

    Google Scholar 

  17. Gerich JE. Oral hypoglycemic agents. N Engl J Med 1989; 321: 1231–45

    PubMed  CAS  Google Scholar 

  18. Bailey CJ, Flatt PR, Marks V. Drugs inducing hypoglycaemia. Pharmacol Ther 1989; 42: 361–84

    PubMed  CAS  Google Scholar 

  19. Ferner RE, Antsiferov ML, Kelman AW, et al. The relationships between dose and concentration of tolbutamide and insulin and glucose reponses in patients with non-insulin-dependent diabetes. Eur J Clin Pharmacol 1991; 40: 163–8

    PubMed  CAS  Google Scholar 

  20. Groop LC, Luzi L, DeFronzo RA, et al. Hyperglycaemia and absorption of sulphonylurea drugs. Lancet 1989; 2: 129–30

    PubMed  CAS  Google Scholar 

  21. Oral hypoglycaemics for diabetes: when and which? [Anonymous] Drug Ther Bull 1991; 29: 13-6

    Google Scholar 

  22. DeFronzo RA. The triumvirate: beta cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 1988; 37: 667–85

    PubMed  CAS  Google Scholar 

  23. Stout R. Insulin and atheroma. 20-yr perspective. Diabetes Care 1990; 6: 631–54

    Google Scholar 

  24. DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991; 14: 173–94

    PubMed  CAS  Google Scholar 

  25. Paice BJ, Paterson KR, Lawson DH. Undesired effects of the sulphonylurea drugs. Adverse Drug React Acute Poisoning Rev 1985; 1: 23–36

    Google Scholar 

  26. Jackson EJ, Bressler R. Clinical pharmacology of sulphonylurea hypoglycaemic agents. Drugs 1981; 22: 211–45

    PubMed  CAS  Google Scholar 

  27. Malacarne P, Castaidi G, Bertusi M, et al. Tolbutamide-induced hemolytic anemia. Diabetes 1977; 26: 156–8

    PubMed  CAS  Google Scholar 

  28. Clarke BF, Campbell IW, Ewing DJ, et al. Generalised hypersensitivity reaction and visceral arteritis with fatal outcome during glibenclamide therapy. Diabetes 1974; 23: 739–42

    PubMed  CAS  Google Scholar 

  29. Moore MR, Brodie MJ. The porphyrias. Med Int 1990; 81: 3349–55

    Google Scholar 

  30. Kadowski T, Hagura R, Kajinuma H, et al. Chlorpropamide-in-duced hyponatraemia: incidence and risk factors. Diabetes Care 1983; 6: 468–71

    Google Scholar 

  31. Groop L, Eriksson CJP, Huupponen R, et al. Roles of chlorpropamide, alcohol and acetaldehyde in determining the chlor-propamide-alcohol flush. Diabetologia 1984; 26: 34–8

    PubMed  CAS  Google Scholar 

  32. Ferner RE, Neil HAW. Sulphonylureas and hypoglycaemia. BMJ 1988; 296: 949–50

    PubMed  CAS  Google Scholar 

  33. Melander A. Sulphonylureas in the treatment of non-insulin-dependent diabetes. Baillieres Clin Endocrinol Metab 1988; 2: 443–53

    PubMed  CAS  Google Scholar 

  34. Jennings AM, Wilson RM, Ward JD. Symptomatic hypoglycemia in NIDDM patients treated with oral hypoglycemic agents. Diabetes Care 1989; 12: 203–8

    PubMed  CAS  Google Scholar 

  35. UK Prospective Diabetes Study (UKPDS): 14. Relative efficacy of randomly allocated diet, sulphonylurea, insulin or metformin therapy in patients with newly diagnosed type 2 diabetes followed for three years. BMJ. In press

  36. Berger W. Incidence of severe side-effects during therapy with sulphonylureas and biguanides. Horm Metabol Res 1985; 15 Suppl.: 111–5

    CAS  Google Scholar 

  37. Campbell IW. Metformin and the sulphonylureas: the comparative risk. Horm Metabol Res 1985; 15 Suppl.: 105–11

    CAS  Google Scholar 

  38. Seltzer HS. Drug-induced hypoglycemia. A review of 1418 cases. Endocrinol Metab Clin North Am 1989; 18: 163–83

    PubMed  CAS  Google Scholar 

  39. Campbell IW. Hypoglycaemia and type 2 diabetes: sulphonylureas. In: Frier BM, Fisher BM, editors. Hypoglycaemia and diabetes. London: Edward Arnold, 1993: 387–92

    Google Scholar 

  40. Frier BM. Hypoglycaemia and diabetes. Diabetic Med 1986; 3: 513–25

    PubMed  CAS  Google Scholar 

  41. Asplund K, Wilholm B-E, Lithner F. Glibenclamide-associated hypoglycaemia: a report on 57 cases. Diabetologia 1983; 24: 412–7

    PubMed  CAS  Google Scholar 

  42. Asplund K, Wiholm B-E, Lundman B. Severe hypoglycaemia during treatment with glipizide. Diabetic Med 1991; 8: 726–31

    PubMed  CAS  Google Scholar 

  43. Hosker JP, Burnett MA, Davies EG, et al. Sulphonylurea therapy doubles B-cell response to glucose in Type 2 diabetics. Diabetologia 1985; 28: 809–14

    PubMed  CAS  Google Scholar 

  44. Krentz AJ, Boyle PJ, Justice K, et al. Successful treatment of severe refractory sulfonylurea-induced hypoglycemia with octreotide. Diabetes Care 1993; 16: 184–6

    PubMed  CAS  Google Scholar 

  45. Johnson SF, Schade DS, Peake GT. Chlorpropamide-induced hypoglycaemia: successful treatment with diazoxide. Am J Med 1977; 63: 799–804

    PubMed  CAS  Google Scholar 

  46. Boyle PJ, Justice K, Krentz AJ, et al. Octreotide reverses hyperinsulinemia and prevents hypoglycemia induced by sul-fonylurea overdose. J Clin Endocrinol Metab 1993; 76: 752–6

    PubMed  CAS  Google Scholar 

  47. Hermann LS. Metformin. A review of its pharmacological properties and therapeutic use. Diabete Metab 1979; 5: 233–45

    PubMed  CAS  Google Scholar 

  48. Bailey CJ. Metformin revisited: its actions and indications for use. Diabetic Med 1988; 5: 315–20

    PubMed  CAS  Google Scholar 

  49. Bailey CJ. Biguanides and NIDDM. Diabetes Care 1992; 15: 755–72

    PubMed  CAS  Google Scholar 

  50. Bailey CJ. Metformin — an update. Gen Pharmacol 1993; 24: 1299–1309

    PubMed  CAS  Google Scholar 

  51. Gin H, Orgerie MB, Aubertin J. The influence of guar gum on absorption of metformin from the gut in healthy volunteers. Horm Metabol Res 1989; 21: 81–3

    CAS  Google Scholar 

  52. Somogyi A, Stockley C, Keal J, et al. Reduction of metformin renal tubular secretion by Cimetidine in man. Br J Clin Pharmacol 1987; 23: 545–51

    PubMed  CAS  Google Scholar 

  53. Oates NS, Shah RR, Idle JR, et al. Influence of oxidation polymorphism on phenformin kinetics and dynamics. Clin Pharmacol Ther 1983; 34: 827–34

    PubMed  CAS  Google Scholar 

  54. Shah RR, Evans DAP, Oates NS, et al. The genetic control of phenformin 4-hydroxylation. J Med Genetics 1985; 22: 361–6

    Google Scholar 

  55. McLelland J. Recovery from metformin overdose. Diabetic Med 1985; 2: 410–1

    PubMed  CAS  Google Scholar 

  56. Bailey CJ, Nattrass M. Treatment — metformin. Baillieres Clin Endocrinol Metab 1988; 2: 455–76

    PubMed  CAS  Google Scholar 

  57. Clarke BF, Duncan LJP. Comparison of chlorpropamide and metformin treatment on weight and blood glucose response of uncontrolled obese diabetics. Lancet 1968; 1: 123–6

    PubMed  CAS  Google Scholar 

  58. Clarke BF, Campbell IW. Comparison of metformin and chlorpropamide in non-obese maturity-onset diabetics uncontrolled by diet. BMJ 1977; 275: 1576–8

    Google Scholar 

  59. Merrin PK, Feher MD, Elkeles RS. Diabetic macrovascular disease and serum lipids: is there a connection? Diabetic Med 1992; 9: 9–14

    PubMed  CAS  Google Scholar 

  60. Campbell IW. Sulphonylureas and metformin: efficacy and inadequacy. In: Bailey CJ, Flatt PR, editors. New antidiabetic drugs. London: Smith Gordon, 1990: 33–51

    Google Scholar 

  61. Hermann LS. Biguanides and sulfonylureas as combination therapy in NIDDM. Diabetes Care 1990; 13 Suppl. 3: 37–41

    PubMed  Google Scholar 

  62. Bailey CJ, Lord JM, Atkins TW. The insulin receptor and diabetes. In: Nattrass M, Santiago JV, editors. Recent advances in diabetes 1. Edinburgh: Churchill Livingstone, 1984: 27–44

    Google Scholar 

  63. Dandona P, Fonseca V, Mier A, et al. Diarrhea and metformin in a diabetic clinic. Diabetes Care 1983; 6: 472–4

    PubMed  CAS  Google Scholar 

  64. Tomkin G. Malabsorption of vitamin B12 in diabetic patients treated with phenformin: a comparison with metformin. BMJ 1973; 3: 673–5

    PubMed  CAS  Google Scholar 

  65. Bergman U, Boman G, Wiholm BE. Epidemiology of adverse drug reactions to phenformin and metformin. BMJ 1978; 2: 464–6

    PubMed  CAS  Google Scholar 

  66. Callaghan TS, Hadden DR, Tompkin GH. Megaloblastic anaemia due to vitamin B12 malabsorption associated with long-term metformin treatment. BMJ 1980; 1214-5

  67. Klapholz L, Leitersdorf E, Weinrauch L. Leucocytoclastic vasculitis and pneumonitis induced by metformin. BMJ 1986; 293: 483

    PubMed  CAS  Google Scholar 

  68. Nattrass M, Alberti KGMM. Biguanides. Diabetologia 1978; 14: 71–4

    PubMed  CAS  Google Scholar 

  69. Nattrass M, Todd PG, Hinks L, et al. Comparative effects of phenformin, metformin and glibenclamide in metabolic rhythms in maturity-onset diabetics. Diabetologia 1977; 13: 145–52

    PubMed  CAS  Google Scholar 

  70. Jackson RA, Hawa MI, Jaspan JV, et al. Mechanism of metformin action in non-insulin-dependent diabetes. Diabetes 1987; 36: 632–40

    PubMed  CAS  Google Scholar 

  71. Food and Drug Administration Report. Phenformin: removal from general market. FDA Drug Bulletin 1977; 7: 14–16

    Google Scholar 

  72. Campbell IW. Metformin and glibenclamide: comparative risks. BMJ 1984; 289: 289

    PubMed  CAS  Google Scholar 

  73. Cohen RD, Woods HF. Clinical and biochemical aspects of lactic acidosis. Oxford: Blackwell Scientific, 1976

    Google Scholar 

  74. Lalau JD, Andrejak M, Moriniere P, et al. Hemodialysis in the treatment of lactic acidosis in diabetics treated with metformin: a study of metformin elimination. Int J Clin Pharmacol Ther Toxicol 1989; 27: 285–8

    PubMed  CAS  Google Scholar 

  75. Gan SC, Barr J, Arieff AI, et al. Biguanide-associated lactic acidosis. Case report and review of the literature. Arch Intern Med 1992; 152: 2333–6

    PubMed  CAS  Google Scholar 

  76. Krentz AJ, Nattrass M. Lactic acidosis. In: Williams G, Pickup JC, editors. Textbook of diabetes. Oxford: Blackwell Scientific, 1991: 490–1

    Google Scholar 

  77. Monson JP. Metformin and lactic acidosis. Prescribers J 1993; 33: 170–3

    Google Scholar 

  78. Stacpoole PW, Wright EC, Baumgartner TG, et al. A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. N Engl J Med 1992; 327: 1564–9

    PubMed  CAS  Google Scholar 

  79. Arieff AI. Lactic acidosis. Current concepts. Diabetes Rev 1994; 2: 168–76

    Google Scholar 

  80. Luft D, Schmulling RM, Eggstein M. Lactic acidosis in biguanide-treated diabetics. A review of 330 cases. Diabetologia 1978; 14: 75–87

    PubMed  CAS  Google Scholar 

  81. Kreisberg RA. Lactate homeostasis and lactic acidosis. Ann Intern Med 1980; 92: 227–37

    PubMed  CAS  Google Scholar 

  82. Lucis OJ. The status of metformin in Canada. Can Med Assoc J 1983; 128: 24–6

    PubMed  CAS  Google Scholar 

  83. Alberti KGMM, Nattrass M. Lactic acidosis. Lancet 1977; 2: 25–9

    PubMed  CAS  Google Scholar 

  84. Pernow B, Saltin B, Wahren J, et al. Leg blood flow and muscle metabolism in occlusive arterial disease of the leg before and after reconstructive surgery. Clin Sci Mol Med 1975; 49: 265–75

    PubMed  CAS  Google Scholar 

  85. Appel D, Rubenstein R, Schrager K, et al. Lactic acidosis in severe asthma. Am J Med 1983; 75: 580–4

    PubMed  CAS  Google Scholar 

  86. Snueli E, Record CO, Alberti KGMM. Liver disease, carbohydrate metbolism and diabetes. Baillieres Clin Endocrinol Metab 1992; 43: 719–43

    Google Scholar 

  87. Scott AR, Tattersall RB. Alpha glucosidase inhibition in the treatment of non-insulin-dependent diabetes mellitus. Diabetic Med 1988; 5: 42–6

    PubMed  CAS  Google Scholar 

  88. Tuomilehto J. Acarbose monotherapy in the treatment of noninsulin-dependent diabetes mellitus — a review. In: Creutzfeldt W, editor. Acarbose for the treatment of diabetes mellitus. Berlin: Springer Verlag, 1988: 104–16

    Google Scholar 

  89. Jenkins DJA, Taylor RH, Goff DJ, et al. Scope and specificity of acarbose in slowing carbohydrate absorption in man. Diabetes 1981; 30: 951–4

    PubMed  CAS  Google Scholar 

  90. Tattersall RB. Alpha-glucosidase inhibition as an adjunct to the treatment of type 1 diabetes. Diabetic Med 1993; 10: 688–93

    PubMed  CAS  Google Scholar 

  91. Putter J, Keup U, Krause HP, et al. Pharmacokinetics of acarbose. In: Creutzfeldt W, editor. Proceedings off the first international symposium on acarbose. Amsterdam: Excerpta Medica, 1982: 38–48

    Google Scholar 

  92. Putter J. Studies on the pharmacokinetics of acarbose in humans. In: Brodbeck U, editor. Enzyme inhibitors. Wienheim: Verlag Chemie, 1980: 139–51

    Google Scholar 

  93. Ruppin H, Hagel J, Feuerbach W, et al. Fate and effects of the alpha-glucosidase inhibitor acarbose in humans: an intestinal slow-marker perfusion study. Gastroenterology 1988; 95: 93–9

    PubMed  CAS  Google Scholar 

  94. Creutzfeldt W, editor. Acarbose, effects on carbohydrate and fat metabolism. Amsterdam: Excerpta Medcia, 1982

    Google Scholar 

  95. Clissold SP, Edwards C. Acarbose: a preliminary review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential. Drugs 1988; 35: 214–43

    PubMed  CAS  Google Scholar 

  96. Creutzfeldt W, editor. Acarbose for the treatment of diabetes mellitus. Berlin: Springer Verlag, 1988

    Google Scholar 

  97. Hanefeld M. Acarbose efficacy review. Pract Diabetes 1993; 10 Suppl.: S21–7

    Google Scholar 

  98. Hanefeld M, Fischer S, Schulze J, et al. Therapeutic potentials of acarbose as firstline drug in NIDDM insufficiently treated with diet alone. Diabetes Care 1991; 14: 732–7

    PubMed  CAS  Google Scholar 

  99. Hotta N, Kakuta H, Sano T, et al. Long-term effect of acarbose on glycaemic control in non-insulin-dependent diabetes mellitus: a placebo-controlled double-blind study. Diabetic Med 1993; 10: 134–8

    PubMed  CAS  Google Scholar 

  100. Hanefeld M. Acarbose montherapy in non-insulin-dependent diabetes mellitus. In: LeFebvre PJ, Standl E, editors. New aspects in diabetes. Berlin: De Gruyter, 1992: 147–62

    Google Scholar 

  101. Hoffman J, Spengler M. Efficacy of 24-week monotherapy with acarbose, glibenclamide, or placebo in NIDDM patients. Diabetes Care 1994; 17: 561–66

    Google Scholar 

  102. Acarbose for non-insulin-dependent diabetes mellitus [Anonymous]. Drug Ther Bull 1994; 32: 51-3

    Google Scholar 

  103. Schlüter G. Toxicology of acarbose with special reference to long-term carcinogenicity studies. In: Creutzfeldt W, editor. Proceedings of the second international symposium on acarbose. Berlin: Excerpta Medica, 1987: 1–16

    Google Scholar 

  104. Hollander P. Safety profile of acarbose, an alpha-glucosidase inhibitor. Drugs 1990; 44 Suppl. 3: 47–53

    Google Scholar 

  105. Spengler M. Acarbose safety review. Pract Diabetes 1993; 10 Suppl.: S28–31

    Google Scholar 

  106. Schlüter G. Toxicology of acarbose. In: Creutzfeldt W, editor. Acarbose, effects on carbohydrate and fat metabolism. Amsterdam: Excerpta Medica, 1982: 49–54

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krentz, A.J., Ferner, R.E. & Bailey, C.J. Comparative Tolerability Profiles of Oral Antidiabetic Agents. Drug-Safety 11, 223–241 (1994). https://doi.org/10.2165/00002018-199411040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199411040-00002

Keywords

Navigation