Skip to main content
Log in

Immunosuppressive and Anti-Inflammatory Mechanisms of Triptolide, the Principal Active Diterpenoid from the Chinese Medicinal Herb Tripterygium wilfordii Hook. f.

  • Review Article
  • Published:
Drugs in R & D Aims and scope Submit manuscript

Abstract

Extracts of Tripterygium wilfordii hook. f. (leigong teng, Thundergod vine) are effective in traditional Chinese medicine for treatment of immune inflammatory diseases including rheumatoid arthritis, systemic lupus erythematosus, nephritis and asthma. Characterisation of the terpenoids present in extracts of Tripterygium identified triptolide, a diterpenoid triepoxide, as responsible for most of the immunosuppressive, anti-inflammatory and antiproliferative effects observed in vitro. Triptolide inhibits lymphocyte activation and T-cell expression of interleukin-2 at the level of transcription. In all cell types examined, triptolide inhibits nuclear factor-κB transcriptional activation at a unique step in the nucleus after binding to DNA. Further characterisation of the molecular mechanisms of triptolide action will serve to elucidate pathways of immune system regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II
Fig. 2
Table III
Fig. 3

Similar content being viewed by others

References

  1. Tao X, Lipsky PE. The Chinese anti-inflammatory and immunosuppressive herbal remedy Tripterygium wilfordii Hook F. Rheum Dis Clin North Am 2000; 26 (1): 29–50, viii

    Article  PubMed  CAS  Google Scholar 

  2. Zheng JR, Liu JH, Hsu LF, et al. Toxicity of total glycosides in Tripterygium wilfordii [in Chinese]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 1983; 5 (2): 73–8

    PubMed  CAS  Google Scholar 

  3. Qian SZ. Tripterygium wilfordii, a Chinese herb effective in male fertility regulation. Contraception 1987; 36 (3): 335–45

    Article  PubMed  CAS  Google Scholar 

  4. Chou WC, Wu CC, Yang PC, et al. Hypovolemic shock and mortality after ingestion of Tripterygium wilfordii hook F: a case report. Int J Cardiol 1995; 49 (2): 173–7

    Article  PubMed  CAS  Google Scholar 

  5. Chen K, Shi QA, Fujioka T, et al. Anti-AIDS agents, 4. Tripterifordin, a novel anti-HIV principle from Tripterygium wilfordii: isolation and structural elucidation. J Nat Prod 1992; 55 (1): 88–92

    Article  PubMed  CAS  Google Scholar 

  6. Duan H, Takaishi Y, Imakura Y, et al. Sesquiterpene alkaloids from Tripterygium hypoglaucum and Tripterygium wilfordii: a new class of potent anti-HIV agents. J Nat Prod 2000; 63 (3): 357–61

    Article  PubMed  CAS  Google Scholar 

  7. Tao X, Cai JJ, Lipsky PE. The identity of immunosuppressive components of the ethyl acetate extract and chloroform methanol extract (T2) of Tripterygium wilfordii Hook. F. J Pharmacol Exp Ther 1995; 272 (3): 1305–12

    PubMed  CAS  Google Scholar 

  8. Tao X, Cush JJ, Garret M, et al. A phase I study of ethyl acetate extract of the Chinese antirheumatic herb Tripterygium wilfordii hook F in rheumatoid arthritis. J Rheumatol 2001; 28 (10): 2160–7

    PubMed  CAS  Google Scholar 

  9. Sher FT, Berchtold GA. Studies on the total synthesis of triptolide. I. J Org Chem 1977; 42 (15): 2569–74

    Article  PubMed  CAS  Google Scholar 

  10. Yang D, Ye XY, Xu M. Enantioselective total synthesis of (−)- triptolide, (−)-triptonide, (+)-triptophenolide, and (+)- triptoquinonide. J Org Chem 2000; 65 (7): 2208–17

    Article  PubMed  CAS  Google Scholar 

  11. Tao XL, Sun Y, Dong Y, et al. A prospective, controlled, double-blind, cross-over study of Tripterygium wilfordii hook F in treatment of rheumatoid arthritis. Chin Med J (Engl) 1989; 102 (5): 327–32

    CAS  Google Scholar 

  12. Wang J, Xu R, Jin R, et al. Immunosuppressive activity of the Chinese medicinal plant Tripterygium wilfordii: I. prolongation of rat cardiac and renal allograft survival by the PG27 extract and immunosuppressive synergy in combination therapy with cyclosporine. Transplantation 2000; 70 (3): 447–55

    Article  PubMed  CAS  Google Scholar 

  13. Faul JL, Nishimura T, Berry GJ, et al. Triptolide attenuates pulmonary arterial hypertension and neointimal formation in rats. Am J Respir Crit Care Med 2000; 162 (6): 2252–8

    PubMed  CAS  Google Scholar 

  14. Hachida M, Lu H, Zhang X, et al. Inhibitory effect of triptolide on platelet derived growth factor-A and coronary arteriosclerosis after heart transplantation. Transplant Proc 1999; 31 (7): 2719–23

    Article  PubMed  CAS  Google Scholar 

  15. Ren B, Sun J, Hu C, et al. Immunosuppressive effects of Tripterygium wilfordii hook F in a rat liver transplant model. Transplant Proc 2001; 33 (1–2): 520–1

    Article  PubMed  CAS  Google Scholar 

  16. Chen BJ, Liu C, Cui X, et al. Prevention of graft vs host disease by a novel immunosuppressant, PG490-88, through inhibition of alloreactive T cell expansion. Transplantation 2000; 70 (10): 1442–7

    Article  PubMed  CAS  Google Scholar 

  17. Krishna G, Liu K, Shigemitsu H, et al. PG490-88, a derivative of triptolide, blocks bleomycin-induced lung fibrosis. Am J Pathol 2001; 158 (3): 997–1004

    Article  PubMed  CAS  Google Scholar 

  18. Chen BJ, Chen Y, Cui X, et al. Mechanisms of tolerance induced by PG490-88 in a bone marrow transplantation model. Transplantation 2002; 73 (1): 115–21

    Article  PubMed  CAS  Google Scholar 

  19. Xia S. Organ transplantation. Chin Med J (Engl) 1996; 109 (1): 29–31

    CAS  Google Scholar 

  20. Zhang XY, Tsuchiya N, Dohi M, et al. Prolonged survival of MRL-lpr/lpr mice treated with Tripterygium wilfordii Hook- F. Clin Immunol Immunopathol 1992; 62 (1 Pt 1): 66–71

    Article  PubMed  CAS  Google Scholar 

  21. Lei W, Liu L, Xue M. Effect of Tripterygium wolfordii on inhibition of rejection reaction of allogeneic skin graft in mice [in Chinese]. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi 1995; 11 (4): 294–5

    PubMed  CAS  Google Scholar 

  22. Li CG. Histopathologic observation on the therapeutic effect of Tripterygium wilfordii in treating experimental allergic encephalomyelitis [in Chinese]. Zhong Xi Yi Jie He Za Zhi 1989; 9 (2): 98–9, 70

    PubMed  CAS  Google Scholar 

  23. Li Z, Li C. Effect of the multiglycoside of Tripterygium wilfordii Hook f. (Tii) on cornea allograft rejection model in rabbit. Yan Ke Xue Bao 1995; 11 (3): 168–72

    PubMed  CAS  Google Scholar 

  24. Liao CX, Li JS. Low-dose cyclosporin A and Tripterygium wilfordii inhibited porcine intestinal allograft rejection. Chin Med J (Engl) 1994; 107 (9): 669–72

    CAS  Google Scholar 

  25. Zhou ZS. Rejection and Tripterygium wilfordii-treated small bowel allografts in pigs: pathological studies. Zhonghua Yi Xue Za Zhi 1993; 73 (9): 541–3, 575

    PubMed  CAS  Google Scholar 

  26. Li LS. Clinical and experimental studies on the effect of Tripterygium wilfordii Hook in the treatment of nephritis. Zhonghua Yi Xue Za Zhi 1982; 62 (10): 581–5

    PubMed  CAS  Google Scholar 

  27. Asano K, Yu Y, Kasahara T, et al. Inhibition of murine chronic graft-versus-host disease by the chloroform extract of Tripterygium wilfordii Hook f. Transpl Immunol 1997; 5 (4): 315–9

    Article  PubMed  CAS  Google Scholar 

  28. Asano K, Matsuishi J, Yu Y, et al. Suppressive effects of Tripterygium wilfordii Hook f., a traditional Chinese medicine, on collagen arthritis in mice. Immunopharmacology 1998; 39 (2): 117–26

    Article  PubMed  CAS  Google Scholar 

  29. Gu WZ, Banerjee S, Rauch J, et al. Suppression of renal disease and arthritis, and prolongation of survival in MRL-lpr mice treated with an extract of Tripterygium wilfordii Hook f. Arthritis Rheum 1992; 35 (11): 1381–6

    PubMed  CAS  Google Scholar 

  30. Zhao B, Huang XC, Du HW. Tripterygium wilfordii on prolonging the survival time of myocardial allografts in mice [in Chinese]. Zhong Xi Yi Jie He Za Zhi 1988; 8 (1): 31–3, 6

    PubMed  CAS  Google Scholar 

  31. Wang J, Xu R, Jin R, et al. Immunosuppressive activity of the Chinese medicinal plant Tripterygium wilfordii: II. Prolongation of hamster-to-rat cardiac xenograft survival by combination therapy with the PG27 extract and cyclosporine. Transplantation 2000; 70 (3): 456–64

    Article  PubMed  CAS  Google Scholar 

  32. Hachida M, Zhang XL, Lu H, et al. Late multiglycosidorum tripterygium treatment ameliorates established graft coronary arteriosclerosis after heart transplantation in the rat. Transplant Proc 1999; 31 (5): 2020–4

    Article  PubMed  CAS  Google Scholar 

  33. Goker H, Haznedaroglu IC, Chao NJ. Acute graft vs host disease: pathobiology and management. Exp Hematol 2001; 29 (3): 259–77

    Article  PubMed  CAS  Google Scholar 

  34. Chen Y, Zeng D, Schlegel PG, et al. PG27, an extract of Tripterygium wilfordii hook f, induces antigen-specific tolerance in bone marrow transplantation in mice. Blood 2000; 95 (2): 705–10

    PubMed  CAS  Google Scholar 

  35. Fishman AP. Etiology and pathogenesis of primary pulmonary hypertension: a perspective. Chest 1998; 114 (3 Suppl.): 242S–7S

    Article  PubMed  CAS  Google Scholar 

  36. Yi ES, Kim H, Ahn H, et al. Distribution of obstructive intimal lesions and their cellular phenotypes in chronic pulmonary hypertension: a morphometric and immunohistochemical study. Am J Respir Crit Care Med 2000; 162 (4 Pt 1): 1577–86

    PubMed  CAS  Google Scholar 

  37. Barst RJ, Rubin LJ, Long WA, et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. The Primary Pulmonary Hypertension Study Group. N Engl J Med 1996; 334 (5): 296–302

    Article  PubMed  CAS  Google Scholar 

  38. Tanaka Y, Schuster DP, Davis EC, et al. The role of vascular injury and hemodynamics in rat pulmonary artery remodeling. J Clin Invest 1996; 98 (2): 434–42

    Article  PubMed  CAS  Google Scholar 

  39. Nishimura T, Faul JL, Berry GJ, et al. 40-O- (2-Hydroxyethyl)-rapamycin attenuates pulmonary arterial hypertension and neointimal formation in rats. Am J Respir Crit Care Med 2001; 163 (2): 498–502

    PubMed  CAS  Google Scholar 

  40. Pan LC, Wilson DW, Segall HJ. Strain differences in the response of Fischer 344 and Sprague-Dawley rats to monocrotaline induced pulmonary vascular disease. Toxicology 1993; 79 (1): 21–35

    Article  PubMed  CAS  Google Scholar 

  41. Lame MW, Jones AD, Wilson DW, et al. Protein targets of monocrotaline pyrrole in pulmonary artery endothelial cells. J Biol Chem 2000; 275 (37): 29091–9

    Article  PubMed  CAS  Google Scholar 

  42. Ushiro S, Ono M, Nakayama J, et al. New nortriterpenoid isolated from anti-rheumatoid arthritic plant, Tripterygium wilfordii, modulates tumor growth and neovascularization. Int J Cancer 1997; 72 (4): 657–63

    Article  PubMed  CAS  Google Scholar 

  43. Kupchan SM, Court WA, Dailey Jr R, et al. Triptolide and tripdiolide, novel antileukemic diterpenoid triepoxides from Tripterygium wilfordii. J Am Chem Soc 1972; 94 (20): 7194–5

    Article  PubMed  CAS  Google Scholar 

  44. Wei YS, Adachi I. Inhibitory effect of triptolide on colony formation of breast and stomach cancer cell lines. Chung Kuo Yao Li Hsueh Pao 1991; 12 (5): 406–10

    PubMed  CAS  Google Scholar 

  45. Shamon LA, Pezzuto JM, Graves JM, et al. Evaluation of the mutagenic, cytotoxic, and antitumor potential of triptolide, a highly oxygenated diterpene isolated from Tripterygium wilfordii. Cancer Lett 1997; 112 (1): 113–7

    Article  PubMed  Google Scholar 

  46. Kupchan SM, Schubert RM. Selective alkylation: a biomimetic reaction of the antileukemic triptolides? Science 1974; 185 (153): 791–3

    Article  Google Scholar 

  47. Qiu D, Zhao G, Aoki Y, et al. Immunosuppressant PG490 (triptolide) inhibits T-cell interleukin-2 expression at the level of purine-box/nuclear factor of activated T- cells and NFkappaB transcriptional activation. J Biol Chem 1999; 274 (19): 13443–50

    Article  PubMed  CAS  Google Scholar 

  48. Tao X, Davis LS, Lipsky PE. Effect of an extract of the Chinese herbal remedy Tripterygium wilfordii hook F on human immune responsiveness. Arthritis Rheum 1991; 34 (10): 1274–81

    Article  PubMed  CAS  Google Scholar 

  49. Tao X, Schulze-Koops H, Ma L, et al. Effects of Tripterygium wilfordii Hook f extracts on induction of cyclooxygenase 2 activity and prostaglandin E2 production. Arthritis Rheum 1998; 41 (1): 130–8

    Article  PubMed  CAS  Google Scholar 

  50. Yang SX, Gao HL, Xie SS, et al. Immunosuppression of triptolide and its effect on skin allograft survival. Int J Immunopharmacol 1992; 14 (6): 963–9

    Article  PubMed  CAS  Google Scholar 

  51. Zhao G, Vaszar LT, Qiu D, et al. Antiinflammatory effects of triptolide in human bronchial epithelial cells. Am J Physiol 2000; 279: L958–66

    CAS  Google Scholar 

  52. Chan MA, Kohlmeier JE, Branden M, et al. Triptolide is more effective in preventing T cell proliferation and interferongamma production than is FK506. Phytother Res 1999; 13 (6): 464–7

    Article  PubMed  CAS  Google Scholar 

  53. Lin N, Sato T, Ito A. Triptolide, a novel diterpenoid triepoxide from Tripterygium wilfordii Hook. f., suppresses the production and gene expression of pro-matrix metalloproteinases 1 and 3 and augments those of tissue inhibitors of metalloproteinases 1 and 2 in human synovial fibroblasts. Arthritis Rheum 2001; 44 (9): 2193–200

    Article  PubMed  CAS  Google Scholar 

  54. Hu KB, Liu ZH, Guo XH, et al. Triptolide inhibits vascular endothelial growth factor expression and production in endothelial cells. Acta Pharmacol Sin 2001; 22 7): 651–6

    PubMed  CAS  Google Scholar 

  55. Yang SX, Xie SS, Gao HL, et al. Triptolide suppresses T-lymphocyte proliferation by inhibiting interleukin-2 receptor expression, but spares interleukin-2 production and mRNA expression. Int J Immunopharmacol 1994; 16 (11): 895–904

    Article  PubMed  CAS  Google Scholar 

  56. Tao X, Davis LS, Hashimoto K, et al. The Chinese herbal remedy, T2, inhibits mitogen-induced cytokine gene transcription by T cells, but not initial signal transduction. J Pharmacol Exp Ther 1996; 276 (1): 316–25

    PubMed  CAS  Google Scholar 

  57. Chang WT, Kang JJ, Lee KY, et al. Triptolide and chemotherapy cooperate in tumor cell apoptosis: a role for the p53 pathway. J Biol Chem 2001; 276 (3): 2221–7

    PubMed  CAS  Google Scholar 

  58. Jiang XH, Wong BC, Lin MC, et al. Functional p53 is required for triptolide-induced apoptosis and AP-1 and nuclear factor-kappaB activation in gastric cancer cells. Oncogene 2001; 20 (55): 8009–18

    Article  PubMed  CAS  Google Scholar 

  59. Maekawa K, Yoshikawa N, Du J, et al. The molecular mechanism of inhibition of interleukin-1beta-induced cyclooxygenase-2 expression in human synovial cells by Tripterygium wilfordii Hook F extract. Inflamm Res 1999; 48 (11): 575–81

    Article  PubMed  CAS  Google Scholar 

  60. Chang DM, Kuo SY, Lai JH, et al. Effects of anti-rheumatic herbal medicines on cellular adhesion molecules. Ann Rheum Dis 1999; 58 (6): 366–71

    Article  PubMed  CAS  Google Scholar 

  61. Matlin SA, Belenguer A, Stacey VE, et al. Male antifertility compounds from Tripterygium wilfordii Hook f. Contraception 1993; 47 (4): 387–400

    Article  PubMed  CAS  Google Scholar 

  62. Zhen QS, Ye X, Wei ZJ. Recent progress in research on Tripterygium: a male antifertility plant. Contraception 1995; 51 (2): 121–9

    Article  PubMed  CAS  Google Scholar 

  63. Lee KY, Chang W, Qiu D, et al. PG490 (triptolide) cooperates with tumor necrosis factor-alpha to induce apoptosis in tumor cells. J Biol Chem 1999; 274 (19): 13451–5

    Article  PubMed  CAS  Google Scholar 

  64. National Cancer Institute. Developmental therapeutics program [online]. Available from: http://dtp.nci.nih.gov/docs/dtp_search.html [Accessed 2002 Dec 09]

  65. Yang Y, Liu Z, Tolosa E, et al. Triptolide induces apoptotic death of T lymphocyte. Immunopharmacology 1998; 40 (2): 139–49

    Article  PubMed  CAS  Google Scholar 

  66. Chan EW, Cheng SC, Sin FW, et al. Triptolide induced cytotoxic effects on human promyelocytic leukemia, T cell lymphoma and human hepatocellular carcinoma cell lines. Toxicol Lett 2001; 122 (1): 81–7

    Article  PubMed  CAS  Google Scholar 

  67. Kiviharju TM, Lecane PS, Sellers RG, et al. Antiproliferative and proapoptotic activities of triptolide (PG490), a natural product entering clinical trials, on primary cultures of human prostatic epithelial cells. Clin Cancer Res 2002; 8 (8): 2666–74

    PubMed  CAS  Google Scholar 

  68. Cantrell D. T cell antigen receptor signal transduction pathways. Annu Rev Immunol 1996; 14: 259–74

    Article  PubMed  CAS  Google Scholar 

  69. Adcock IM. Transcription factors as activators of gene transcription: AP-1 and NF-kappa B. Monaldi Arch Chest Dis 1997; 52 (2): 178–86

    PubMed  CAS  Google Scholar 

  70. Pu LX, Zhang TM. Effects of triptolide on T lymphocyte functions in mice. Chung Kuo Yao Li Hsueh Pao 1990; 11 (1): 76–9

    PubMed  CAS  Google Scholar 

  71. Serfling E, Avots A, Neumann M. The architecture of the interleukin-2 promoter: a reflection of T-lymphocyte activation. Biochim Biophys Acta 1995; 1263: 181–200

    Article  PubMed  Google Scholar 

  72. Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 1997; 15: 707–47

    Article  PubMed  CAS  Google Scholar 

  73. Emmel EA, Verweij CL, Durand DB, et al. Cyclosporin A specifically inhibits function of nuclear proteins involved in T cell activation. Science 1989; 246: 1617–20

    Article  PubMed  CAS  Google Scholar 

  74. Mouzaki A, Dai Y, Weil R, et al. Cyclosporin A and FK506 prevent the derepression of the IL-2 gene in mitogen-induced primary T lymphocytes. Cytokine 1992; 4: 151–60

    Article  PubMed  CAS  Google Scholar 

  75. Gummert JF, Ikonen T, Morris RE. Newer immunosuppressive drugs: a review. J Am Soc Nephrol 1999; 10 (6): 1366–80

    PubMed  CAS  Google Scholar 

  76. Los M, Schenk H, Hexel K, et al. IL-2 gene expression and NF-kB activation through CD28 requires reactive oxygen production by 5-lipoxygenase. EMBO Journal 1995; 14: 3731–40

    PubMed  CAS  Google Scholar 

  77. Durand DB, Shaw JP, Bush MR, et al. Characterization of antigen receptor response elements within the interleukin-2 enhancer. Mol Cell Biol 1988; 8 (4): 1715–24

    PubMed  CAS  Google Scholar 

  78. Garrity PA, Chen D, Rothenberg EV, et al. Interleukin-2 transcription is regulated in vivo at the level of coordinated binding of both constitutive and regulated factors. Mol Cell Biol 1994; 14 (3): 2159–69

    PubMed  CAS  Google Scholar 

  79. Ward SB, Hernandez-Hoyos G, Chen F, et al. Chromatin remodeling of the interleukin-2 gene: distinct alterations in the proximal versus distal enhancer regions. Nucleic Acids Res 1998; 26 (12): 2923–34

    Article  PubMed  CAS  Google Scholar 

  80. Northrop JP, Ullman KS, Crabtree GR. Characterization of the nuclear and cytoplasmic components of the lymphoidspecific nuclear factor of activated T cells (NFAT) complex. J Biol Chem 1993; 268: 2917–23

    PubMed  CAS  Google Scholar 

  81. Crabtree GR. Calcium, calcineurin, and the control of transcription. J Biol Chem 2001; 276 (4): 2313–6

    Article  PubMed  CAS  Google Scholar 

  82. Xanthoudakis S, Viola JP, Shaw KT, et al. An enhanced immune response in mice lacking the transcription factor NFAT1. Science 1996; 272: 892–5

    Article  PubMed  CAS  Google Scholar 

  83. de la Pompa JL, Timmerman LA, Takimoto H, et al. Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 1998; 392 (6672): 182–6

    Article  PubMed  Google Scholar 

  84. Kao PN, Chen L, Brock G, et al. Cloning and expression of cyclosporin A- and FK506-sensitive nuclear factor of activated T-cells: NF45 and NF90. J Biol Chem 1994; 269 (32): 20691–9

    PubMed  CAS  Google Scholar 

  85. Aoki Y, Zhao G, Qiu D, et al. CsA-sensitive purine-box transcriptional regulator in bronchial epithelial cells contains NF45, NF90, and Ku. Am J Physiol 1998; 275 (6 Pt 1): L1164–72

    PubMed  CAS  Google Scholar 

  86. Ting NSY, Kao PN, Chan DW, et al. DNA-dependent protein kinase interacts with antigen receptor response element binding proteins NF90 and NF45. J Biol Chem 1998; 273: 2136–45

    Article  PubMed  CAS  Google Scholar 

  87. Gu Y, Seidl KJ, Rathbun GA, et al. Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity 1997; 7 (5): 653–65

    Article  PubMed  CAS  Google Scholar 

  88. Ouyang H, Nussenzweig A, Kurimasa A, et al. Ku70 is required for DNA repair but not for T cell antigen receptor gene recombination in vivo. J Exp Med 1997; 186 (6): 921–9

    Article  PubMed  CAS  Google Scholar 

  89. Nussenzweig A, Chen C, da Costa Soares V, et al. Requirement for Ku80 in growth and immunoglobulin V (D)J recombination. Nature 1996; 382 (6591): 551–5

    Article  PubMed  CAS  Google Scholar 

  90. Zhu C, Bogue MA, Lim DS, et al. Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V (D)J recombination intermediates. Cell 1996; 86 (3): 379–89

    Article  PubMed  CAS  Google Scholar 

  91. Gao Y, Chaudhuri J, Zhu C, et al. A targeted DNA-PKcs-null mutation reveals DNA-PK-independent functions for KU in V (D)J recombination. Immunity 1998; 9 (3): 367–76

    Article  PubMed  CAS  Google Scholar 

  92. Taccioli GE, Amatucci AG, Beamish HJ, et al. Targeted disruption of the catalytic subunit of the DNA-PK gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity 1998; 9 (3): 355–66

    Article  PubMed  CAS  Google Scholar 

  93. Kurimasa A, Ouyang H, Dong LJ, et al. Catalytic subunit of DNA-dependent protein kinase: impact on lymphocyte development and tumorigenesis. Proc Natl Acad Sci US A 1999; 96 (4): 1403–8

    Article  CAS  Google Scholar 

  94. Liu J, Farmer Jr J, Lane WS, et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP- FK506 complexes. Cell 1991; 66 (4): 807–15

    Article  PubMed  CAS  Google Scholar 

  95. Baldwin Jr A. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996; 14: 649–83

    Article  PubMed  CAS  Google Scholar 

  96. Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336 (15): 1066–71

    Article  PubMed  CAS  Google Scholar 

  97. Zhong H, Voll RE, Ghosh S. Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell 1998; 1 (5): 661–71

    Article  PubMed  CAS  Google Scholar 

  98. Zhong H, May MJ, Jimi E, et al. The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell 2002; 9 (3): 625–36

    Article  PubMed  CAS  Google Scholar 

  99. Ashburner BP, Westerheide SD, Baldwin Jr AS. The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol 2001; 21 (20): 7065–77

    Article  PubMed  CAS  Google Scholar 

  100. Aoki Y, Qiu D, Zhao GH, et al. Leukotriene B4 mediates histamine induction of NF-kB and IL-8 in human bronchial epithelial cells. Am J Physiol 1998; 274: L1030–9

    PubMed  CAS  Google Scholar 

  101. Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 1996; 274 (5288): 782–4

    Article  PubMed  CAS  Google Scholar 

  102. Zong WX, Edelstein LC, Chen C, et al. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappaB that blocks TNFalpha-induced apoptosis. Genes Dev 1999; 13 (4): 382–7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr Kao has received consultant fees from Pharmagenesis (Palo Alto, CA, USA). The research findings described have been supported by NIH grants AI39624 and HL62588, and by industrial grants from Pharmagenesis to PNK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter N. Kao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, D., Kao, P.N. Immunosuppressive and Anti-Inflammatory Mechanisms of Triptolide, the Principal Active Diterpenoid from the Chinese Medicinal Herb Tripterygium wilfordii Hook. f.. Drugs in R&D 4, 1–18 (2003). https://doi.org/10.2165/00126839-200304010-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00126839-200304010-00001

Keywords

Navigation