Skip to main content
Log in

Is there a Role for Inhaled Corticosteroids and Macrolide Therapy in Bronchiectasis?

  • Current Opinion
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Bronchiectasis is characterised by permanent dilatation of the bronchi that arises from chronic inflammation predominantly caused by bacterial infection. This condition remains a major cause of excess respiratory morbidity and treatment is generally only partly successful. There is an urgent need for improved anti-inflammatory medication to treat bronchiectasis. Two potentially useful therapies are inhaled corticosteroids (ICS) and macrolides. The clinical trials that have been performed in bronchiectasis with these two medications can be considered to be preliminary data. This article reviews the anti-inflammatory properties, clinical efficacy and adverse effects of ICS and macrolides.

ICS have a large number of potent anti-inflammatory properties. ICS remain the first-line treatment in asthma, reduce exacerbations in chronic obstructive pulmonary disease, and may improve lung function and symptoms in cystic fibrosis (CF). Four small clinical trials have assessed the effect of high-dose ICS on bronchiectasis. The main reported effect of these trials was a reduction in sputum volume and this may be a marker of decreased airway inflammation. Other possible benefits included decreased cough and sputum inflammatory cells/biomarkers. ICS have a relatively high prevalence of local adverse effects, and may be associated with ocular complications and osteoporosis. These adverse effects can be minimised by prescribing low doses of the medication.

Macrolides have both antibacterial and immunomodulatory properties. Macrolides have less marked immunosuppressive properties than corticosteroids, and effects include decreasing mucous production, inhibiting virulence factors and biofilm formation of Pseudomonas aeruginosa, decreasing leukocyte numbers and altering inflammatory mediator release. Macrolides have been shown to be extremely effective in the treatment of diffuse panbronchiolitis, improve lung function and symptoms in asthma and CF, and reduce nasal polyps and secretions in sinusitis. Five small clinical trials have assessed the effect of macrolides on bronchiectasis. Reported benefits include reduced sputum volume, improved lung function and better symptom control. Macrolides are generally well tolerated, although they do have a number of drug interactions. There are concerns about the development of resistance, especially to non-tuberculous mycobacteria, with prolonged macrolide use.

The evidence available suggests that both medications have a role in the management of bronchiectasis. More definitive trials of ICS and macrolides in bronchiectasis will clarify the likely benefit of these therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Reid LM. Reduction in bronchial subdivision in bronchiectasis. Thorax 1950; 5: 233–47

    Article  PubMed  Google Scholar 

  2. King P, Holdsworth S, Freezer N, et al. Bronchiectasis. Intern Med J 2006; 36: 729–37

    Article  PubMed  CAS  Google Scholar 

  3. King PT, Holdsworth SR, Freezer NJ, et al. Outcome in adult bronchiectasis. J Chron Obstruct Pulmon Dis 2005; 2: 27–34

    Article  Google Scholar 

  4. Weycker D, Edelsberg J, Oster G, et al. Prevalence and economic burden of bronchiectasis. Clinical Pulm Medicine 2005; 4: 205–9

    Article  Google Scholar 

  5. O’Brien C, Guest PJ, Hill SL, et al. Physiological and radiological characterisation of patients diagnosed with chronic obstructive pulmonary disease in primary care. Thorax 2000; 55: 635–42

    Article  PubMed  Google Scholar 

  6. Patel IS, Vlahos I, Wilkinson TM, et al. Bronchiectasis, exacerbation indices and inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2004

  7. Cole PJ. Inflammation: a two-edged sword. The model of bronchiectasis. Eur J Respir Dis Suppl 1986; 147: 6–15

    PubMed  CAS  Google Scholar 

  8. Amitani R, Wilson R, Rutman A, et al. Effects of human neutrophil elastase and Pseudomonas aeruginosa proteinases on human respiratory epithelium. Am J Respir Cell Mol Biol 1991; 4: 26–32

    PubMed  CAS  Google Scholar 

  9. Barker AF. Bronchiectasis. N Engl J Med 2002; 346: 1383–93

    Article  PubMed  Google Scholar 

  10. Murphy MB, Reen DJ, Fitzgerald MX. Atopy, immunological changes, and respiratory function in bronchiectasis. Thorax 1984; 39: 179–84

    Article  PubMed  CAS  Google Scholar 

  11. Pang J, Chan HS, Sung JY. Prevalence of asthma, atopy, and bronchial hyperreactivity in bronchiectasis: a controlled study. Thorax 1989; 44: 948–51

    Article  PubMed  CAS  Google Scholar 

  12. Janeway Jr CA, Travers P, Walport M, et al. Extrinsic regulation of unwanted immune responses: immunobiology 6, the immune system in health and disease. New York: Garland, 2005: 613–30

    Google Scholar 

  13. Djukanovic R, Roche WR, Wilson JW, et al. Mucosal inflammation in asthma. Am Rev Respir Dis 1990; 142: 434–57

    PubMed  CAS  Google Scholar 

  14. Laitinen LA, Laitinen A, Haahtela T. A comparative study of the effects of an inhaled corticosteroid, budesonide, and a beta 2-agonist, terbutaline, on airway inflammation in newly diagnosed asthma: a randomized, double-blind, parallel-group controlled trial. J Allergy Clin Immunol 1992; 90: 32–42

    Article  PubMed  CAS  Google Scholar 

  15. Booth H, Richmond I, Ward C, et al. Effect of high dose inhaled fluticasone propionate on airway inflammation in asthma. Am J Respir Crit Care Med 1995; 152: 45–52

    PubMed  CAS  Google Scholar 

  16. Jeffery PK, Godfrey RW, Adelroth E, et al. Effects of treatment on airway inflammation and thickening of basement membrane reticular collagen in asthma: a quantitative light and electron microscopic study. Am Rev Respir Dis 1992; 145: 890–9

    PubMed  CAS  Google Scholar 

  17. Laitinen A, Altraja A, Kampe M, et al. Tenascin is increased in airway basement membrane of asthmatics and decreased by an inhaled steroid. Am J Respir Crit Care Med 1997; 156: 951–8

    PubMed  CAS  Google Scholar 

  18. Corticosteroids: their biologic mechanisms and application to the treatment of asthma. Am Rev Respir Dis 1990; 141: Sl-96

  19. Barnes PJ, Pedersen S, Busse WW. Efficacy and safety of inhaled corticosteroids: new developments. Am J Respir Crit Care Med 1998; 157: S1–53

    PubMed  CAS  Google Scholar 

  20. Gaga M, Bentley AM, Humbert M, et al. Increases in CD4+ T lymphocytes, macrophages, neutrophils and interleukin 8 positive cells in the airways of patients with bronchiectasis. Thorax 1998; 53: 685–91

    Article  PubMed  CAS  Google Scholar 

  21. Hattotuwa KL, Gizycki MJ, Ansari TW, et al. The effects of inhaled fluticasone on airway inflammation in chronic obstructive pulmonary disease: a double-blind, placebo-controlled biopsy study. Am J Respir Crit Care Med 2002; 165: 1592–6

    Article  PubMed  Google Scholar 

  22. Gizycki MJ, Hattotuwa KL, Barnes N, et al. Effects of fluticasone propionate on inflammatory cells in COPD: an ultrastructural examination of endobronchial biopsy tissue. Thorax 2002; 57: 799–803

    Article  PubMed  CAS  Google Scholar 

  23. Cox G. Glucocorticoid treatment inhibits apoptosis in human neutrophils: separation of survival and activation outcomes. J Immunol 1995; 154: 4719–25

    PubMed  CAS  Google Scholar 

  24. Meagher LC, Cousin JM, Seckl JR, et al. Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. J Immunol 1996; 156: 4422–8

    PubMed  CAS  Google Scholar 

  25. Haahtela T, Jarvinen M, Kava T, et al. Comparison of a beta 2-agonist, terbutaline, with an inhaled corticosteroid, budesonide, in newly detected asthma. N Engl J Med 1991; 325: 388–92

    Article  PubMed  CAS  Google Scholar 

  26. Haahtela T, Jarvinen M, Kava T, et al. Effects of reducing or discontinuing inhaled budesonide in patients with mild asthma. N Engl J Med 1994; 331: 700–5

    Article  PubMed  CAS  Google Scholar 

  27. The Childhood Asthma Management Program Research Group. Long-term effects of budesonide or nedocromil in children with asthma. N Engl J Med 2000; 343: 1054–63

    Article  Google Scholar 

  28. Suissa S, Ernst P, Benayoun S, et al. Low-dose inhaled corticosteroids and the prevention of death from asthma. N Engl J Med 2000; 343: 332–6

    Article  PubMed  CAS  Google Scholar 

  29. Donahue JG, Weiss ST, Livingston JM, et al. Inhaled steroids and the risk of hospitalization for asthma. JAMA 1997; 277: 887–91

    Article  PubMed  CAS  Google Scholar 

  30. Blais L, Ernst P, Boivin JF, et al. Inhaled corticosteroids and the prevention of readmission to hospital for asthma. Am J Respir Crit Care Med 1998; 158: 126–32

    PubMed  CAS  Google Scholar 

  31. Vestbo J, Sorensen T, Lange P, et al. Long-term effect of inhaled budesonide in mild and moderate chronic obstructive pulmonary disease: a randomised controlled trial. Lancet 1999; 353: 1819–23

    Article  PubMed  CAS  Google Scholar 

  32. Pauwels RA, Lofdahl CG, Laitinen LA, et al. Long-term treatment with inhaled budesonide in persons with mild chronic obstructive pulmonary disease who continue smoking: European Respiratory Society Study on Chronic Obstructive Pulmonary Disease. N Engl J Med 1999; 340: 1948–53

    Article  PubMed  CAS  Google Scholar 

  33. Burge PS, Calverley PM, Jones PW, et al. Randomised, double blind, placebo controlled study of fluticasone propionate in patients with moderate to severe chronic obstructive pulmonary disease: the ISOLDE trial. BMJ 2000; 320: 1297–303

    Article  PubMed  CAS  Google Scholar 

  34. Effect of inhaled triamcinolone on the decline in pulmonary function in chronic obstructive pulmonary disease. N Engl J Med 2000; 343: 1902-9

  35. Paggiaro PL, Dahle R, Bakran I, et al. Multicentre randomised placebo-controlled trial of inhaled fluticasone propionate in patients with chronic obstructive pulmonary disease. International COPD Study Group. Lancet 1998; 351: 773–80

    CAS  Google Scholar 

  36. Sin DD, Tu JV. Inhaled corticosteroids and the risk of mortality and readmission in elderly patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001; 164: 580–4

    PubMed  CAS  Google Scholar 

  37. Equi A, Balfour-Lynn IM, Bush A, et al. Long term azithro-mycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial. Lancet 2002; 360: 978–84

    Article  PubMed  CAS  Google Scholar 

  38. Soriano JB, Vestbo J, Pride NB, et al. Survival in COPD patients after regular use of fluticasone propionate and salmeterol in general practice. Eur Respir J 2002; 20: 819–25

    Article  PubMed  CAS  Google Scholar 

  39. Soriano JB, Kiri VA, Pride NB, et al. Inhaled corticosteroids with/without long-acting beta-agonists reduce the risk of rehospitalization and death in COPD patients. Am J Respir Med 2003; 2: 67–74

    Article  PubMed  CAS  Google Scholar 

  40. Fan VS, Bryson CL, Curtis JR, et al. Inhaled corticosteroids in chronic obstructive pulmonary disease and risk of death and hospitalization: time-dependent analysis. Am J Respir Crit Care Med 2003; 168: 1488–94

    Article  PubMed  Google Scholar 

  41. Suissa S. Effectiveness of inhaled corticosteroids in chronic obstructive pulmonary disease: immortal time bias in observational studies. Am J Respir Crit Care Med 2003; 168: 49–53

    Article  PubMed  Google Scholar 

  42. Macie C, Wooldrage K, Manfreda J, et al. Inhaled corticosteroids and mortality in COPD. Chest 2006; 130: 640–6

    Article  PubMed  CAS  Google Scholar 

  43. van Hären EH, Lammers JW, Festen J, et al. The effects of the inhaled corticosteroid budesonide on lung function and bronchial hyperresponsiveness in adult patients with cystic fibrosis. Respir Med 1995; 89: 209–14

    Article  PubMed  Google Scholar 

  44. Nikolaizik WH, Schoni MH. Pilot study to assess the effect of inhaled corticosteroids on lung function in patients with cystic fibrosis. J Pediatr 1996; 128: 271–4

    Article  PubMed  CAS  Google Scholar 

  45. Balfour-Lynn IM, Klein NJ, Dinwiddie R. Randomised controlled trial of inhaled corticosteroids (fluticasone propionate) in cystic fibrosis. Arch Dis Child 1997; 77: 124–30

    Article  PubMed  CAS  Google Scholar 

  46. Dezateux C, Walters S, Balfour-Lynn I. Inhaled corticosteroids for cystic fibrosis. Cochrane Database Syst Rev 2000: CD001915

  47. Elborn JS, Johnston B, Allen F, et al. Inhaled steroids in patients with bronchiectasis. Respir Med 1992; 86: 121–4

    Article  PubMed  CAS  Google Scholar 

  48. Tsang KW, Ho PL, Lam WK, et al. Inhaled fluticasone reduces sputum inflammatory indices in severe bronchiectasis. Am J Respir Crit Care Med 1998; 158: 723–7

    PubMed  CAS  Google Scholar 

  49. Tsang KW, Tan KC, Ho PL, et al. Inhaled fluticasone in bronchiectasis: a 12 month study. Thorax 2005; 60: 239–43

    Article  PubMed  CAS  Google Scholar 

  50. Martinez-Garcia MA, Perpina-Tordera M, Roman-Sanchez P, et al. Inhaled steroids improve quality of life in patients with steady-state bronchiectasis. Respir Med 2006; 100: 1623–32

    Article  PubMed  Google Scholar 

  51. Martinez-Garcia MA, Perpina-Tordera M, Roman-Sanchez P, et al. Quality-of-life determinants in patients with clinically sta-ble bronchiectasis. Chest 2005; 128: 739–45

    Article  PubMed  Google Scholar 

  52. Vestbo J, Prescott E, Lange P. Association of chronic mucus hypersecretion with FEV1 decline and chronic obstructive pulmonary disease morbidity: Copenhagen City Heart Study Group. Am J Respir Crit Care Med 1996; 153: 1530–5

    PubMed  CAS  Google Scholar 

  53. Selroos O, Backman R, Forsen KO, et al. Local side-effects during 4-year treatment with inhaled corticosteroids: a com-parison between pressurized metered-dose inhalers and Turbuhaler. Allergy 1994; 49: 888–90

    Article  PubMed  CAS  Google Scholar 

  54. Garbe E, LeLorier J, Boivin JF, et al. Inhaled and nasal glucocorticoids and the risks of ocular hypertension or open-angle glaucoma. JAMA 1997; 277: 722–7

    Article  PubMed  CAS  Google Scholar 

  55. Cumming RG, Mitchell P, Leeder SR. Use of inhaled corticosteroids and the risk of cataracts. N Engl J Med 1997; 337: 8–14

    Article  PubMed  CAS  Google Scholar 

  56. Garbe E, Suissa S, LeLorier J. Association of inhaled corticosteroid use with cataract extraction in elderly patients. JAMA 1998; 280: 539–43

    Article  PubMed  CAS  Google Scholar 

  57. Scanion PD, Connett JE, Wise RA, et al. Loss of bone density with inhaled triamcinolone in Lung Health Study II. Am J Respir Crit Care Med 2004; 170: 1302–9

    Article  Google Scholar 

  58. Israel E, Banerjee TR, Fitzmaurice GM, et al. Effects of inhaled glucocorticoids on bone density in premenopausal women. N Engl J Med 2001; 345: 941–7

    Article  PubMed  CAS  Google Scholar 

  59. Wong CA, Walsh LJ, Smith CJ, et al. Inhaled corticosteroid use and bone-mineral density in patients with asthma. Lancet 2000; 355: 1399–403

    Article  PubMed  CAS  Google Scholar 

  60. Fujita K, Kasayama S, Hashimoto J, et al. Inhaled corticosteroids reduce bone mineral density in early postmenopausal but not premenopausal asthmatic women. J Bone Miner Res 2001; 16: 782–7

    Article  PubMed  CAS  Google Scholar 

  61. Martin RJ, Szefler SJ, Chinchilli VM, et al. Systemic effect comparisons of six inhaled corticosteroid preparations. Am J Respir Crit Care Med 2002; 165: 1377–83

    Article  PubMed  Google Scholar 

  62. Itkin IH, Menzel ML. The use of macrolide antibiotic substances in the treatment of asthma. J Allergy 1970; 45: 146–62

    Article  PubMed  CAS  Google Scholar 

  63. Shinkai M, Rubin BK. Macrolides and airway inflammation in children. Paediatr Respir Rev 2005; 6: 227–35

    Article  PubMed  Google Scholar 

  64. Goswami SK, Kivity S, Marom Z. Erythromycin inhibits respiratory glycoconjugate secretion from human airways in vitro. Am Rev Respir Dis 1990; 141: 72–8

    PubMed  CAS  Google Scholar 

  65. Shimizu T, Shimizu S, Hattori R, et al. In vivo and in vitro effects of macrolide antibiotics on mucus secretion in airway epithelial cells. Am J Respir Crit Care Med 2003; 168: 581–7

    Article  PubMed  Google Scholar 

  66. Yanagihara K, Tomono K, Imamura Y, et al. Effect of clarithromycin on chronic respiratory infection caused by Pseudomonas aeruginosa with biofilm formation in an experimental murine model. J Antimicrob Chemother 2002; 49: 867–70

    Article  PubMed  CAS  Google Scholar 

  67. Mitsuya Y, Kawai S, Kobayashi H. Influence of macrolides on guanosine diphospho-D-mannose dehydrogenase activity in Pseudomonas biofilm. J Infect Chemother 2000; 6: 45–50

    Article  PubMed  CAS  Google Scholar 

  68. Wozniak DJ, Keyser R. Effects of subinhibitory concentrations of macrolide antibiotics on Pseudomonas aeruginosa. Chest 2004; 125: 62–69S; quiz 69S

    Article  Google Scholar 

  69. Kawamura-Sato K, Iinuma Y, Hasegawa T, et al. Effect of subinhibitory concentrations of macrolides on expression of flagellin in Pseudomonas aeruginosa and Proteus mirabilis. Antimicrob Agents Chemother 2000; 44: 2869–72

    Article  PubMed  CAS  Google Scholar 

  70. Baumann U, Fischer JJ, Gudowius P, et al. Buccal adherence of Pseudomonas aeruginosa in patients with cystic fibrosis under long-term therapy with azithromycin. Infection 2001; 29: 7–11

    Article  PubMed  CAS  Google Scholar 

  71. Tsang KW, Ng P, Ho PL, et al. Effects of erythromycin on Pseudomonas aeruginosa adherence to collagen and morphology in vitro. Eur Respir J 2003; 21: 401–6

    Article  PubMed  CAS  Google Scholar 

  72. Tateda K, Ishii Y, Matsumoto T, et al. Potential of macrolide antibiotics to inhibit protein synthesis of Pseudomonas aeruginosa: suppression of virulence factors and stress response. J Infect Chemother 2000; 6: 1–7

    Article  PubMed  CAS  Google Scholar 

  73. Mitsuyama T, Hidaka K, Furuno T, et al. Release of nitric oxide and expression of constitutive nitric oxide synthase of human endothelial cells: enhancement by a 14-membered ring macrolide. Mol Cell Biochem 1998; 181: 157–61

    Article  PubMed  CAS  Google Scholar 

  74. Shinkai M, Foster GH, Rubin BK. Macrolide antibiotics modulate ERK phosphorylation and IL-8 and GM-CSF production by human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2006; 290: L75–85

    Article  PubMed  CAS  Google Scholar 

  75. Sakito O, Kadota J, Kohno S, et al. Interleukin 1 beta, tumor necrosis factor alpha, and interleukin 8 in bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis: a poten-tial mechanism of macrolide therapy. Respiration 1996; 63: 42–8

    Article  PubMed  CAS  Google Scholar 

  76. Asano K, Kamakazu K, Hisamitsu T, et al. Modulation of Th2 type cytokine production from human peripheral blood leukocytes by a macrolide antibiotic, roxithromycin, in vitro. Int Immunopharmacol 2001; 1: 1913–21

    Article  PubMed  CAS  Google Scholar 

  77. Aoki Y, Kao PN. Erythromycin inhibits transcriptional activation of NF-kappaB, but not NFAT, through calcineurin-independent signaling in T cells. Antimicrob Agents Chemother 1999; 43: 2678–84

    PubMed  CAS  Google Scholar 

  78. Lin HC, Wang CH, Liu CY, et al. Erythromycin inhibits beta2-integrins (CDllb/CD18) expression, interleukin-8 release and intracellular oxidative metabolism in neutrophils. Respir Med 2000; 94: 654–60

    Article  PubMed  CAS  Google Scholar 

  79. Aoshiba K, Nagai A, Konno K. Erythromycin shortens neutrophil survival by accelerating apoptosis. Antimicrob Agents Chemother 1995; 39: 872–7

    Article  PubMed  CAS  Google Scholar 

  80. Ogawa N, Sugawara Y, Fujiwara Y, et al. Roxithromycin promotes lymphocyte apoptosis in dermatophagoides-sensitive asthma patients. Eur J Pharmacol 2003; 474: 273–81

    Article  PubMed  CAS  Google Scholar 

  81. Kadota J, Mukae H, Ishii H, et al. Long-term efficacy and safety of clarithromycin treatment in patients with diffuse panbronchiolitis. Respir Med 2003; 97: 844–50

    Article  PubMed  CAS  Google Scholar 

  82. Nagai H, Shishido H, Yoneda R, et al. Long-term low-dose administration of erythromycin to patients with diffuse panbronchiolitis. Respiration 1991; 58: 145–9

    Article  PubMed  CAS  Google Scholar 

  83. Ichikawa Y, Ninomiya H, Koga H, et al. Erythromycin reduces neutrophils and neutrophil-derived elastolytic-like activity in the lower respiratory tract of bronchiolitis patients. Am Rev Respir Dis 1992; 146: 196–203

    PubMed  CAS  Google Scholar 

  84. Ichikawa Y, Hotta M, Sumita S, et al. Reversible airway lesions in diffuse panbronchiolitis: detection by high-resolution computed tomography. Chest 1995; 107: 120–5

    Article  PubMed  CAS  Google Scholar 

  85. Brugiere O, Milleron B, Antoine M, et al. Diffuse panbronchiolitis in an Asian immigrant. Thorax 1996; 51: 1065–7

    Article  PubMed  CAS  Google Scholar 

  86. Kudoh S, Azuma A, Yamamoto M, et al. Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. Am J Respir Crit Care Med 1998; 157: 1829–32

    PubMed  CAS  Google Scholar 

  87. Zeiger RS, Schatz M, Sperling W, et al. Efficacy of troleandomycin in outpatients with severe, corticosteroid-dependent asthma. J Allergy Clin Immunol 1980; 66: 438–46

    Article  PubMed  CAS  Google Scholar 

  88. Wald JA, Friedman BF, Farr RS. An improved protocol for the use of troleandomycin (TAO) in the treatment of steroidrequiring asthma. J Allergy Clin Immunol 1986; 78: 36–43

    Article  PubMed  CAS  Google Scholar 

  89. Rosenberg SM, Gerhard H, Grunstein MM, et al. Use of TAO without methylprednisolone in the treatment of severe asthma. Chest 1991; 100: 849–50

    Article  PubMed  CAS  Google Scholar 

  90. Flotte TR, Loughlin GM. Benefits and complications of troleandomycin (TAO) in young children with steroid-dependent asthma. Pediatr Pulmonol 1991; 10: 178–82

    Article  PubMed  CAS  Google Scholar 

  91. Kamada AK, Hill MR, Ikle DN, et al. Efficacy and safety of low-dose troleandomycin therapy in children with severe, steroid-requiring asthma. J Allergy Clin Immunol 1993; 91: 873–82

    Article  PubMed  CAS  Google Scholar 

  92. Siracusa A, Brugnami G, Fiordi T, et al. Troleandomycin in the treatment of difficult asthma. J Allergy Clin Immunol 1993; 92: 677–82

    Article  PubMed  CAS  Google Scholar 

  93. Yamada T, Fujieda S, Mori S, et al. Macrolide treatment decreased the size of nasal polyps and IL-8 levels in nasal lavage. Am J Rhinol 2000; 14: 143–8

    Article  PubMed  CAS  Google Scholar 

  94. Rubin BK, Druce H, Ramirez OE, et al. Effect of clarithromycin on nasal mucus properties in healthy subjects and in patients with purulent rhinitis. Am J Respir Crit Care Med 1997; 155: 2018–23

    PubMed  CAS  Google Scholar 

  95. Iino Y, Sugita K, Toriyama M, et al. Erythromycin therapy for otitis media with effusion in sinobronchial syndrome. Arch Otolaryngol Head Neck Surg 1993; 119: 648–51

    Article  PubMed  CAS  Google Scholar 

  96. Ordonez CL, Stulbarg M, Grundland H, et al. Effect of clarithromycin on airway obstruction and inflammatory markers in induced sputum in cystic fibrosis: a pilot study. Pediatr Pulmonol 2001; 32: 29–37

    Article  PubMed  CAS  Google Scholar 

  97. Wolter J, Seeney S, Bell S, et al. Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax 2002; 57: 212–6

    Article  PubMed  CAS  Google Scholar 

  98. Southern KW, Barker PM, Solis A. Macrolide antibiotics for cystic fibrosis. Cochrane Database Syst Rev 2003: CD002203

  99. Suzuki T, Yanai M, Yamaya M, et al. Erythromycin and common cold in COPD. Chest 2001; 120: 730–3

    Article  PubMed  CAS  Google Scholar 

  100. Koh YY, Lee MH, Sun YH, et al. Effect of roxithromycin on airway responsiveness in children with bronchiectasis: a double-blind, placebo-controlled study. Eur Respir J 1997; 10: 994–9

    Article  PubMed  CAS  Google Scholar 

  101. Bahous J, Cartier A, Pineau L, et al. Pulmonary function tests and airway responsiveness to methacholine in chronic bronchiectasis of the adult. Bull Eur Physiopathol Respir 1984; 20: 375–80

    PubMed  CAS  Google Scholar 

  102. Ip M, Lam WK, So SY, et al. Analysis of factors associated with bronchial hyperreactivity to methacholine in bronchiectasis. Lung 1991; 169: 43–51

    Article  PubMed  CAS  Google Scholar 

  103. Tsang KW, Ho PI, Chan KN, et al. A pilot study of low-dose erythromycin in bronchiectasis. Eur Respir J 1999; 13: 361–4

    Article  PubMed  CAS  Google Scholar 

  104. Davies G, Wilson R. Prophylactic antibiotic treatment of bronchiectasis with azithromycin. Thorax 2004; 59: 540–1

    PubMed  CAS  Google Scholar 

  105. Cymbala AA, Edmonds LC, Bauer MA, et al. The diseasemodifying effects of twice-weekly oral azithromycin in pa-tients with bronchiectasis. Treat Respir Med 2005; 4: 117–22

    Article  PubMed  CAS  Google Scholar 

  106. Yalcin E, Kiper N, Ozcelik U, et al. Effects of claritromycin on inflammatory parameters and clinical conditions in children with bronchiectasis. J Clin Pharm Ther 2006; 31: 49–55

    Article  PubMed  CAS  Google Scholar 

  107. Zuckerman JM. Macrolides and ketolides: azithromycin, clarithromycin, telithromycin. Infect Dis Clin North Am 2004; 18: 621–49, xi

    Article  PubMed  Google Scholar 

  108. Ray WA, Murray KT, Meredith S, et al. Oral erythromycin and the risk of sudden death from cardiac causes. N Engl J Med 2004; 351: 1089–96

    Article  PubMed  CAS  Google Scholar 

  109. Milberg P, Eckardt L, Bruns HJ, et al. Divergent proarrhythmic potential of macrolide antibiotics despite similar QT prolongation: fast phase 3 repolarization prevents early afterdepolarizations and torsade de pointes. J Pharmacol Exp Ther 2002; 303: 218–25

    Article  PubMed  CAS  Google Scholar 

  110. Farrell DJ, Morrissey I, Bakker S, et al. Molecular characterization of macrolide resistance mechanisms among Streptococcus pneumoniae and Streptococcus pyogenes isolated from the PROTEKT 1999–2000 study. J Antimicrob Chemother 2002; 50 Suppl. S1: 39-47

    Google Scholar 

  111. Rothermel CD. Penicillin and macrolide resistance in pneumococcal pneumonia: does in vitro resistance affect clinical outcomes? Clin Infect Dis 2004; 38 Suppl. 4: S346–9

    Article  PubMed  Google Scholar 

  112. Wickremasinghe M, Ozerovitch LJ, Davies G, et al. Non-tuberculous mycobacteria in patients with bronchiectasis. Thorax 2005; 60: 1045–51

    Article  PubMed  CAS  Google Scholar 

  113. Fowler SJ, French J, Screaton NJ, et al. Non-tuberculous mycobacteria in bronchiectasis: prevalence and patient characteristics. Eur Respir J 2006; 28: 1204–10

    Article  PubMed  CAS  Google Scholar 

  114. Griffith DE, Brown-Elliott BA, Langsjoen B, et al. Clinical and molecular analysis of macrolide resistance in mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2006; 174: 928–34

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

There was no specific funding for this article. The author has no conflict of interest in this work. Associate Professor Peter Holmes and Professor Stephen Holdsworth have helped the author with his research into bronchiectasis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul King.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, P. Is there a Role for Inhaled Corticosteroids and Macrolide Therapy in Bronchiectasis?. Drugs 67, 965–974 (2007). https://doi.org/10.2165/00003495-200767070-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200767070-00002

Keywords

Navigation