Skip to main content
Log in

Do Nonsteroidal Anti-Inflammatory Drugs Have a Protective Effect Against Dementia?

  • Leading Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Terry RD, Masliah E, Hansen LA. Structural basis of the cognitive alterations in Alzheimer’s disease. In: Terry RD, Katzman R, Bick KL, editors. Alzheimer’s disease. New York: Raven Press, 1994: 179–96

    Google Scholar 

  2. Breteler MMB, Claus JJ, van Duijn CM, et al. Epidemiology of Alzheimer’s disease. Epidemiol Rev 1992; 14: 59–82

    PubMed  CAS  Google Scholar 

  3. Max W. The economic impact of Alzheimer’s disease. Neurology 1993; 43Suppl 4: S6–10

    Google Scholar 

  4. Ogomori K, Kitamoto T, Tateishi J, et al. β-Protein amyloid is widely distributed in the central nervous system of patients with Alzheimer’s disease. Am J Pathol 1989; 134: 234–5

    Google Scholar 

  5. Cai X-D, Golde TE, Younkin SG. Release of excess amyloid β protein from a mutant amyloid β protein precursor. Science 1993; 259: 514–6

    Article  PubMed  CAS  Google Scholar 

  6. Selkoe DJ. Amyloid β-protein precursor: new dues to the genesis of Alzheimer’s disease. Curr Opin Neurobiol 1994; 4: 708–16

    Article  PubMed  CAS  Google Scholar 

  7. Suzuki N, Cheung TT, Cai X-D, et al. An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (βAPP717) mutants. Science 1994; 264: 1336–40

    Article  PubMed  CAS  Google Scholar 

  8. Checler F. Processing of the β-amyloid precursor protein and its regulation in Alzheimer’s disease. J Neurochem 1995; 65: 1431–44

    Article  PubMed  CAS  Google Scholar 

  9. Ma J, Yee A, Brewer Jr HB, et al. Amyloid-associated proteins α1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer β-protein into filaments. Nature 1994; 372:92–4

    Article  PubMed  CAS  Google Scholar 

  10. Strittmatter WJ, Roses AD. Apolipoprotein E and Alzheimer disease. Proc Nati Acad Sci USA 1995; 92: 4725–7

    Article  CAS  Google Scholar 

  11. Rozemuller JM, Eikelenboom P, Stam FC, et al. A4 protein in Alzheimer’s disease: primary and secondary cellular events in extracellular amyloid deposition. J Neuropathol Exper Neurol 1989; 48: 647–63

    Article  Google Scholar 

  12. Eikelenboom P, Stam FC. Immunoglobulins and complement factors in senile plaques. Acta Neuropathol 1982; 57: 239–42

    Article  PubMed  CAS  Google Scholar 

  13. Abraham CR, Selkoe DJ, Potter H. Immunocytochemical identification of the serum protease inhibitor α1-antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease. Cell 1988; 52: 487–501

    Article  PubMed  CAS  Google Scholar 

  14. Rozemuller JM, Eikelenboom P, Pals ST, et al. Microglial cells around amyloid plaques in Alzheimer’s disease express leucocyte adhesion molecules of the LFA-1 family. Neurosci Lett 1989; 101:288–92

    Article  PubMed  CAS  Google Scholar 

  15. Bauer J, Strauss S, Schreiter-Gasser U, et al. Interleukin 6 and α2-macroglobulin indicate an acute phase State in Alzheimer’s disease cortices. FEBS Lett 1991; 285: 111–4

    Article  PubMed  CAS  Google Scholar 

  16. Frohman EM, Frohman TC, Gupta S, et al. Expression of intercellular adhesion molecule 1 (ICAM-1) in Alzheimer’s disease. J Neurol Sci 1991; 106: 105–11

    Article  PubMed  CAS  Google Scholar 

  17. McGeer PL, Rogers J. Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology 1992; 42: 447–9

    Article  PubMed  CAS  Google Scholar 

  18. McGeer PL, Kawamata T, Walker DG. Distribution of clusterin in Alzheimer brain tissue. Brain Res 1992; 579: 337–41

    Article  PubMed  CAS  Google Scholar 

  19. Dickson DW, Lee SC, Mattiace LA, et al. Microglia and cytokines in neurological disease: with special reference to AIDS and Alzheimer’s disease. Glia 1993; 7: 75–83

    Article  PubMed  CAS  Google Scholar 

  20. Eikelenboom P, Zhan SS, van Gool WA, et al. Inflammatory mechanisms in Alzheimer’s disease. Trends Pharmacol Sci 1994; 15:447–50

    Article  PubMed  CAS  Google Scholar 

  21. Eikelenboom P, Zhan SS, Kamphorst W, et al. Cellular and substrate adhesion molecules (integrins) and their ligands in cerebral amyloid plaques in Alzheimer’s disease. Virchows Arch 1994; 424: 421–7

    Article  PubMed  CAS  Google Scholar 

  22. Griffin WST, Sheng JG, Roberts GW, et al. Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J Neuropathol Exper Neurol 1995; 54: 276–81

    Article  CAS  Google Scholar 

  23. Veerhuis R, Van der Valk P, Janssen I, et al. Complement activation in amyloid plaques in Alzheimer’s disease brains does not proceed further than C3. Virchows Arch 1995; 426: 603–10

    Article  PubMed  CAS  Google Scholar 

  24. Veerhuis R, Janssen I, Hack CE, et al. Early complement components in Alzheimer’s disease brains. Acta Neuropathol 1996; 91: 53–60

    Article  PubMed  CAS  Google Scholar 

  25. Zhan S-S, Veerhuis R, Kamphorst W, et al. Distribution of beta amyloid associated proteins in plaques in Alzheimer’s disease and in the non-demented elderly. Neurodegeneration 1995; 4: 291–7

    Article  PubMed  CAS  Google Scholar 

  26. Mackenzie IRA, Hao CH, Munoz DG. Microglia in senile plaque formation. Neurobiol Aging 1995; 16: 797–804

    Article  PubMed  CAS  Google Scholar 

  27. Rogers J, Luber-Narod J, Styren SD, et al. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 1988; 9: 339–49

    Article  PubMed  CAS  Google Scholar 

  28. Huell M, Strauss S, Volk B, et al. Interleukin-6 is present in early stages of plaque formations and is restricted to the brains of Alzheimer’s disease patients. Acta Neuropathol 1995; 89: 544–51

    Article  PubMed  CAS  Google Scholar 

  29. Colton CA, Gilbert DL. Microglia, an in vivo source of reactive oxygen species in the brain. In: Seil FJ, editor. Advances in Neurology. Vol. 59. New York: Raven Press, 1993: 321–6

    Google Scholar 

  30. Haga S, Ikeda K, Sato M, et al. Synthetic Alzheimer amyloid β/A4 peptides enhance production of complement C3 component by cultured microglia cells. Brain Res 1993; 601: 88–94

    Article  PubMed  CAS  Google Scholar 

  31. Klegeris A, Walker DG, McGeer PL. Activation of macrophages by Alzheimer β amyloid peptide. Biochem Biophys Res Commun 1994; 199: 984–91

    Article  PubMed  CAS  Google Scholar 

  32. Giulian D, Haverkamp LJ, Li J, et al. Senile plaques stimulate microglia to release a neurotoxin found in Alzheimer brain. Neurochem Int 1995; 27: 119–37

    Article  PubMed  CAS  Google Scholar 

  33. Van Muiswinkel FL, Veerhuis R, Eikelenboom P. Amyloid β protein (Aβ) primes cultured rat microglial cells for an enhanced phorbol-myristate-acetate induced respiratory burst activity. J Neurochem 1996; 66: 2468–76

    Article  PubMed  Google Scholar 

  34. Walker DG, Kim SU, McGeer PL. Complement and cytokine gene expression in cultured microglia derived from postmortem human brains. J Neurosci Res 1995; 40: 478–93

    Article  PubMed  CAS  Google Scholar 

  35. Shaffer LM, Dority MD, Gupta-Bansal R, et al. Amyloid β protein (Aβ) removal by neuroglial cells in culture. Neurobiol Aging 1995; 16:737–45

    Article  PubMed  CAS  Google Scholar 

  36. Davis JB, McMurray HF, Schubert D. The amyloid beta-protein of AD is chemotactic for mononuclear phagocytes. Biochem Biophys Res Commun 1992; 189: 1096–100

    Article  PubMed  CAS  Google Scholar 

  37. Banati RB, Gehrmann J, Schubert P, et al. Cytotoxicity of microglia. Glia 1993; 7: 111–8

    Article  PubMed  CAS  Google Scholar 

  38. McGeer PL, Kawamata T, Walker DG, et al. Microglia in degenerative neurological disease. Glia 1993; 7: 84–92

    Article  PubMed  CAS  Google Scholar 

  39. Rogers J, Cooper NR, Webster S, et al. complement activation by β-amyloid in Alzheimer’s disease. Proc Nati Acad Sci USA 1992; 89: 10016–20

    Article  CAS  Google Scholar 

  40. Jiang H, Burdick D, Glabe CG, et al. β-amyloid activates complement by binding to a specifie region of the collage-like domain of the Clq Achain. J Immunol 1994; 152: 5050–9

    PubMed  CAS  Google Scholar 

  41. Webster S, O’Barr S, Rogers J. Enhanced aggregation and β structure of amyloid β peptide after coincubation with Clq. J Neurosci Res 1994; 39: 448–56

    Article  PubMed  CAS  Google Scholar 

  42. Korotzer AR, Watt J, Cribbs D, et al. Cultured rat microglia express Clq and receptor Clq: implications for amyloid effects on microglia. Exper Neurol, 1995; 134: 214–21

    Article  CAS  Google Scholar 

  43. Johnson SA, Lampert-Etchells M, Pasinetti GM, et al. Complement mRNA in the mammalian brain: responses to Alzheimer’s disease and experimental brain lesioning. Neurobiol Aging 1992; 13: 641–8

    Article  PubMed  CAS  Google Scholar 

  44. Lorenzo A, Yankner BA. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci USA 1994; 91: 12243–7

    Article  PubMed  CAS  Google Scholar 

  45. Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, et al. Structure-activity analysis of β-amyloid peptides: contributions of the β25–35 region to aggregation and neurotoxicity. J Neurochem, 1995; 64: 253–65

    Article  PubMed  CAS  Google Scholar 

  46. Schultz J, Schaller J, McKinley M, et al. Enhanced cytotoxicity of amyloid β-peptide by a complement dependent mechanism. Neurosci Lett, 1994; 175: 99–102

    Article  PubMed  CAS  Google Scholar 

  47. Knapp MJ, Knopman DS, Solomon PR, et al. A 30-week, randomized controlled trial of high-dose tacrine in patients with Alzheimer’s disease. JAMA 1994; 271: 985–91

    Article  PubMed  CAS  Google Scholar 

  48. Mohr E, Mendis T, Rusk IN, et al. Neurotransmitter replacement therapy in Alzheimer’s disease. J Psychiatry Neurosci 1994; 19: 17–23

    PubMed  CAS  Google Scholar 

  49. Rossor M, Iveren LL. Non-cholinergic neurotransmitter abnormalities in Alzheimer’s disease. Br Med Bull 1986; 42: 70–4

    PubMed  CAS  Google Scholar 

  50. Aisen PS, Davis KL. Inflammatory mechanisms in Alzheimer’s disease: implications for therapy. Am J Psychiatry 1994; 151: 1105–13

    PubMed  CAS  Google Scholar 

  51. Bierer LM, Haroutunian V, Gabriel S, et al. Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem 1995; 64: 749–60

    Article  PubMed  CAS  Google Scholar 

  52. O’Brien AAJ, Bulpitt CJ. The effects of ACE inhibitors on cognitive function. Drugs Aging 1995; 6: 173–80

    Article  PubMed  Google Scholar 

  53. Jenkinson ML, Bliss MR, Brain AT, et al. Rheumatoid arthritis and senile dementia of the Alzheimer’s type. Br J Rheumatol 1989; 28: 86–8

    Article  PubMed  CAS  Google Scholar 

  54. McGeer PL, McGeer E, Rogers J, et al. Anti-inflammatory drugs and Alzheimer disease [letter]. Lancet 1990; 335: 1037

    Article  PubMed  CAS  Google Scholar 

  55. Canadian study of health and aging. The Canadian study of health and aging: risk factors for Alzheimer’s disease in Canada. Neurology 1994; 44: 2073–80

    Google Scholar 

  56. Breitner JCS, Gau BA, Welsh KA, et al. Inverse association of anti-inflammatory treatments and Alzheimer’s disease: initial results of a co-twin control study. Neurology 1994; 44: 227–32

    Article  PubMed  CAS  Google Scholar 

  57. Breitner JCS, Welsh KA, Helms MJ, et al. Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol Aging 1995; 16: 523–30

    Article  PubMed  CAS  Google Scholar 

  58. Andersen K, Launer LJ, Ott A, et al. Do nonsteroidal anti-inflammatory drugs decrease the risk for Alzheimer’s disease? The Rotterdam Study. Neurology 1995; 45: 1441–5

    Article  PubMed  CAS  Google Scholar 

  59. Rogers J, Kirby LC, Hempelman SR, et al. Clinical trial of indomethacin in Alzheimer’s disease. Neurology 1993; 43: 1609–11

    Article  PubMed  CAS  Google Scholar 

  60. Rich JB, Rasmusson DX, Folstein MF, et al. Nonsteroidal antiinflammatory drugs in Alzheimer’s disease. Neurology 1995; 45:51–5

    Article  PubMed  CAS  Google Scholar 

  61. Girgis L, Brooks P. Nonsteriodal anti-inflammatory drugs: differential use in older patients. Drugs Aging 1994; 4: 101–12

    Article  PubMed  CAS  Google Scholar 

  62. Jones RH, Tait CL. Gastrointestinal side-effects of NSAIDs in the community. Br J Clin Pract 1995; 49: 67–70

    PubMed  CAS  Google Scholar 

  63. Brooks PM, Day RO. Nonsteroidal antiinflammatory drugs: differences and similarities. N Engl J Med 1991; 324: 1716–25

    Article  PubMed  CAS  Google Scholar 

  64. Saag KG, Rubenstein LM, Chrischilles, et al. Nonsteriodal antiinflammatory drugs and cognitive decline in the elderly. J Rheumatol 1995; 22: 2142–7

    PubMed  CAS  Google Scholar 

  65. Seitz M, Loetscher P, Dewald B, et al. Immunosuppressive drugs and their complications. Drug Ther Bull 1994; 32: 66–70

    Article  Google Scholar 

  66. Wilmot CA, Sahasrabudhe SR, Ringheim GE, et al. β-amyloid, cytokines and other potential strategies for modifying the pathophysiology of Alzheimer’s disease. In: Cutler NR, Gottfries CG, Siegfried K, editors. Alzheimer’s disease: clinical and treatment perspectives. Chichester: John Wiley and Sons, 1995: 117–50

    Google Scholar 

  67. Eikelenboom P, Veerhuis R. The role of complement and activated microglia in the pathogenesis of Alzheimer’s disease. Neurobiol Aging. In press

  68. Lee VM-Y, Daughenbaugh R, Trojanowski JQ. Microtubule stabilizing drugs for the treatment of Alzheimer’s disease: a position paper. Neurobiol Aging 1994; 15: S87–9

    Article  PubMed  Google Scholar 

  69. Furuta A, Price DL, Pardo CA, et al. Localization of Superoxide dismutases in Alzheimer’s disease and Down’s syndrome neocortex and hippocampus. Am J Pathol 1995; 146: 357–67

    PubMed  CAS  Google Scholar 

  70. Games D, Adams D, Alessandrini R, et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F betaamyloid precursor protein. Nature 1995; 373: 523–7

    Article  PubMed  CAS  Google Scholar 

  71. Arendt T, Holzer M, Fruth R, et al. Paired helical filament-like phosphorylation of tau, deposition of β/A4-amyloid and memory impairment in rat induced by chronic inhibition of phosphatase 1 and 2a. Neuroscience 1995; 69: 691–8

    Article  PubMed  CAS  Google Scholar 

  72. Vane JR. NSAIDs, COX-2 inhibitors, and the gut [letter]. Lancet 1995; 346: 1105–6

    Article  PubMed  CAS  Google Scholar 

  73. Elliott SN, McKnight W, Cirino G, et al. A nitric oxide-releasing nonsteroidal anti-inflammatory drug accelerates gastric ulcer healing in rats. Gastroenterology 1995; 109: 524–30

    Article  PubMed  CAS  Google Scholar 

  74. Rott O, Fleischer B, Cash E. Interleukin-10 prevents experimental allergic encephalitis in rats. Eur J Immunol 1994; 24: 1434–40

    Article  PubMed  CAS  Google Scholar 

  75. Burger D, Dayer J-M. Inhibitory cytokines and cytokine inhibitors. Neurology 1995; 45: S39–43

    Article  PubMed  CAS  Google Scholar 

  76. Salaffi F, Carotti M, Sartini A, et al. A prospective study of the long-term efficacy and toxicity of low-dose methotrexate in rheumatoid arthritis. Clin Exp Rheumatol 1995; 13: 23–8

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piet Eikelenboom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Muiswinkel, F.L., Eikelenboom, P. Do Nonsteroidal Anti-Inflammatory Drugs Have a Protective Effect Against Dementia?. Drugs & Aging 9, 1–7 (1996). https://doi.org/10.2165/00002512-199609010-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-199609010-00001

Keywords

Navigation