Skip to main content
Log in

Mechanisms of NSAID-Induced Hepatotoxicity

Focus on Nimesulide

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Nonsteroidal anti-inflammatory drugs (NSAIDs) have been associated with idiosyncratic hepatotoxicity in susceptible patients. The molecular mechanisms underlying this toxicity have not yet been fully elucidated. However, experimental evidence suggests that they include increased concentration of the drugs in the hepatobiliary compartment, formation of reactive metabolites that covalently modify proteins and produce oxidative stress, and mitochondrial injury. Genetic and/or acquired patient factors can either augment the pathways leading to hepatic toxicity or impede the protective and detoxifying pathways. An example is nimesulide, a selective cyclo-oxygenase-2 inhibitor widely used for the treatment of inflammatory and pain conditions, which has been recently associated with rare but serious and unpredictable adverse reactions in the liver (increases in serum aminotransferase activities, hepatocellular necrosis, and/or intrahepatic cholestasis). Similar to other drugs causing idiosyncratic hepatotoxicity, both the molecule and the patient contribute to the hazard. Here, the weakly acidic sulfonanilide drug undergoes bioreductive metabolism of the nitroarene group to reactive intermediates that have been implicated in oxidative stress, covalent binding, and mitochondrial injury. It is only in a small number of susceptible patients, however, that genetic or nongenetic factors will cause this potential toxicity to become clinically manifest. In view of the very large recipient population, the incidence of nimesulide-induced liver injury has been low (approximately 0.1 per 100 000 patients treated). Although this estimation is based on spontaneous reporting data versus sales units and needs correction due to the classical bias of this system, the type and incidence of these rare but severe hepatic adverse reactions are comparable to that of other NSAIDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Giuliano F, Ferraz JGP, Pereira R, et al. Cyclooxygenase selectivity of nonsteroidal anti-inflammatory drugs in humans: ex vivo evaluation. Eur J Pharmacol 2001; 426: 95–103

    Article  PubMed  CAS  Google Scholar 

  2. Wober W. Comparative efficacy and safety of nimesulide and diclofenac in patients with acute shoulder, and a meta-analysis of controlled studies with nimesulide. Rheumatology 1999; 38Suppl. 1: 33–8

    Article  PubMed  CAS  Google Scholar 

  3. Conforti A, Leone R, Moretti U, et al. Adverse drug reactions related to the use of NSAIDs with a focus on nimesulide: results of spontaneous reporting from a Northern Italian area. Drug Saf 2001; 24(14): 1081–90

    Article  PubMed  CAS  Google Scholar 

  4. Ophaswongse S, Maibach H. Topical nonsteroidal anti-inflammatory drugs: allergic and photoallergic contact dermatitis and phototoxicity. Contact Dermatitis 1993; 29: 57–64

    Article  PubMed  CAS  Google Scholar 

  5. Farrell GC. Liver disease produced by nonsteroidal anti-inflammatory drugs. In: Farrell GC, editor. Drug-induced liver disease. Edinburgh: Churchill Livingstone, 1994: 371–388

    Google Scholar 

  6. Zimmerman HJ. Hepatic injury associated with nonsteroidal anti-inflammatory drugs. In: Lewis AJ, Furst DE, editors. Nonsteroidal anti-inflammatory drugs. New York: Marcel Dekker, 1994: 171–94

    Google Scholar 

  7. Boelsterli UA, Zimmerman HJ, Kretz-Rommel A. Idiosyncratic liver toxicity of nonsteroidal anti-inflammatory drugs: molecular mechanisms and pathology. Crit Rev Toxicol 1995; 25: 207–35

    Article  PubMed  CAS  Google Scholar 

  8. Davies NM, Wallace JL. Nonsteroidal anti-inflammatory drug-induced gastrointestinal toxicity: new insights into an old problem. J Gastroenterol 1997; 32: 127–33

    Article  PubMed  CAS  Google Scholar 

  9. Fosslien E. Adverse effects of nonsteroidal anti-inflammatory drugs on the gastrointestinal system. Ann Clin Lab Sci 1998; 28: 67–81

    PubMed  CAS  Google Scholar 

  10. Schnieder ARJ, Benz C, Riemann JF. Adverse effects of nonsteroidal anti-inflammatory drugs on the small and large bowel. Endoscopy 1999; 31: 761–7

    Article  Google Scholar 

  11. Zimmerman HJ. Hepatotoxicity: the adverse effects of drugs and other chemicals on the liver. 2nd ed. Philadelphia: Lippincott Williams & Wilkins, 1999

    Google Scholar 

  12. Davies NM, Saleh JY, Skjodt NM. Detection and prevention of NSAID-induced enteropathy. J Pharm Pharm Sci 2000; 3: 137–55

    PubMed  CAS  Google Scholar 

  13. Schiff MH, Whelton A. Renal toxicity associated with disease-modifying antirheumatic drugs used for the treatment of rheumatoid arthritis. Semin Arthritis Rheum 2000; 30: 196–208

    Article  PubMed  CAS  Google Scholar 

  14. Boelsterli UA. Mechanisms underlying the hepatotoxicity of nonsteroidal anti-inflammatory drugs. In: Kaplowitz N, DeLeve L, editors. Drug-induced liver disease. New York: Marcel Dekker, 2002: 345–75

    Google Scholar 

  15. Fry SW, Seeff LB. Hepatotoxicity of analgesics and anti-inflammatory agents. Gastroenterol Clin North Am 1995; 24: 875–905

    PubMed  CAS  Google Scholar 

  16. Trechot P, Gillet P, Gay G, et al. Incidence of hepatitis induced by nonsteroidal anti-inflammatory drugs (NSAID) [letter]. Ann Rheum Dis 1996; 55: 936

    Article  PubMed  CAS  Google Scholar 

  17. Walker AM. Quantitative studies of the risk of serious hepatic injury in persons using nonsteroidal anti-inflammatory drugs. Arthritis Rheum 1997; 40: 201–8

    Article  PubMed  CAS  Google Scholar 

  18. Pirmohamed M, Park BK. Genetic susceptibility to adverse drug reactions. Trends Pharmacol Sci 2001; 22: 298–305

    Article  PubMed  CAS  Google Scholar 

  19. Uetrecht JP. New concepts in immunology relevant to idiosyncratic drug reactions: the ‘danger hypothesis’ and innate immune system. Chem Res Toxicol 1999; 12: 387–95

    Article  PubMed  CAS  Google Scholar 

  20. Kaplowitz N. Mechanisms of liver cell injury. J Hepatol 2000; 32Suppl. 1: 39–47

    Article  PubMed  CAS  Google Scholar 

  21. Paulus HE. FDA Arthritis Advisory Committee Meeting. Arthritis Rheum 1982; 25: 1124–5

    Article  PubMed  CAS  Google Scholar 

  22. McDougall P, Markham A, Cameron I, et al. The mechanism of inhibition of mitochondrial oxidative phosphorylation by the nonsteroidal anti-inflammatory agent diflunisal. Biochem Pharmacol 1983; 32: 2595–8

    Article  PubMed  CAS  Google Scholar 

  23. Knights KM, Drew R. The effects of ibuprofen enantiomers on hepatocyte intermediary metabolism and mitochondrial respiration. Biochem Pharmacol 1992; 44: 1291–6

    Article  PubMed  CAS  Google Scholar 

  24. Petrescu I, Tarba C. Uncoupling effects of diclofenac and aspirin in the perfused liver and isolated hepatic mitochondria of rat. Biochim Biophys Acta (Bioenergetics) 1997; 1318: 385–94

    Article  CAS  Google Scholar 

  25. Masubuchi Y, Saito H, Horie T. Structural requirements for the hepatotoxicity of nonsteroidal anti-inflammatory drugs in isolated rat hepatocytes. J Pharmacol Exp Ther 1998; 287: 208–13

    PubMed  CAS  Google Scholar 

  26. Browne GS, Nelson C, Nguyen T, et al. Stereoselective and substrate-dependent inhibition of hepatic mitochondrial β-oxidation and oxidative phosphorylation by the nonsteroidal anti-inflammatory drugs ibuprofen, flurbiprofen, and ketorolac. Biochem Pharmacol 1999; 57: 837–44

    Article  PubMed  CAS  Google Scholar 

  27. Moreno-Sanchez R, Bravo C, Vasquez C, et al. Inhibition and uncoupling of oxidative phosphorylation by nonsteroidal anti-inflammatory drugs. Biochem Pharmacol 1999; 57: 743–52

    Article  PubMed  CAS  Google Scholar 

  28. Lemasters JJ, Nieminen AL, Qian T, et al. The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury. Mol Cell Biochem 1997; 174: 159–65

    Article  PubMed  CAS  Google Scholar 

  29. Uyemura SA, Santos AC, Mingatto FE, et al. Diclofenac sodium and mefenamic acid: potent inducers of the membrane permeability transition in renal cortex mitochondria. Arch Biochem Biophys 1997; 342: 231–5

    Article  PubMed  CAS  Google Scholar 

  30. Al-Nasser IA. Ibuprofen-induced liver mitochondrial permeability transition. Toxicol Lett 2000; 111: 213–8

    Article  PubMed  CAS  Google Scholar 

  31. Masubuchi Y, Yamada S, Horie T. Possible mechanism of hepatocyte injury induced by diphenylamine and its structurally related nonsteroidal anti-inflammatory drugs. J Pharmacol Exp Ther 2000; 292: 982–7

    PubMed  CAS  Google Scholar 

  32. Seitz S, Kretz-Rommel A, Oude Elferink RPJ, et al. Selective protein adduct formation of diclofenac glucuronide is critically dependent on the rat canalicular conjugate export pump (Mrp2). Chem Res Toxicol 1998; 11: 513–9

    Article  PubMed  CAS  Google Scholar 

  33. Bolder U, Trang NV, Hagey LR, et al. Sulindac is excreted into bile by a canalicular bile salt pump and undergoes a cholehepatic circulation in rats. Gastroenterology 1999; 117: 962–71

    Article  PubMed  CAS  Google Scholar 

  34. Sallustio BC, Sabordo L, Evans AM, et al. Hepatic disposition of electrophilic acyl glucuronide conjugates. Curr Drug Metab 2000; 1: 163–80

    Article  PubMed  CAS  Google Scholar 

  35. Soroka CJ, Lee JM, Azzaroli F, et al. Cellular localization and up-regulation of multidrug resistance-associated protein 3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver. Hepatology 2001; 33: 783–91

    Article  PubMed  CAS  Google Scholar 

  36. Spahn-Langguth H, Benet LZ. Acyl glucuronides revisited: is the glucuronidation process a toxification as well as a detoxification mechanism? Drug Metab Rev 1992; 24: 45–8

    Google Scholar 

  37. Benet LZ, Spahn-Langguth H, Iwakawa S, et al. Predictability of the covalent binding of acidic drugs in man. Life Sci 1993; 53: PL141–6

    Article  PubMed  CAS  Google Scholar 

  38. Hargus SJ, Amouzedeh HR, Pumford NR, et al. Metabolic activation and immunochemical localization of liver protein adducts of the nonsteroidal anti-inflammatory drug diclofenac. Chem Res Toxicol 1994; 7: 575–82

    Article  PubMed  CAS  Google Scholar 

  39. Bailey MJ, Dickinson RG. Chemical and immunochemical comparison of protein adduct formation of four carboxylate drugs in rat liver and plasma. Chem Res Toxicol 1996; 9: 659–66

    Article  PubMed  CAS  Google Scholar 

  40. Wade LT, Kenna JG, Caldwell J. Immunochemical identification of mouse hepatic protein adducts derived from the nonsteroidal anti-inflammatory drugs diclofenac, sulindac, and ibuprofen. Chem Res Toxicol 1997; 10: 546–55

    Article  PubMed  CAS  Google Scholar 

  41. Wang M, Dickinson RG. Disposition and covalent binding of diflunisal and diflunisal acyl glucuronide in the isolated perfused rat liver. Drug Metab Dispos 1998; 26: 98–104

    PubMed  CAS  Google Scholar 

  42. Ware JA, Graf MLM, Martin BM, et al. Immunochemical detection and identification of protein adducts of diclofenac in the small intestine of rats: possible role in allergic reactions. Chem Res Toxicol 1998; 11: 164–71

    Article  PubMed  CAS  Google Scholar 

  43. Boelsterli UA. Reactive acyl glucuronides: possible role in small intestinal toxicity induced by nonsteroidal anti-inflammatory drugs. Toxic Subst Mech 1999; 18: 83–100

    Article  CAS  Google Scholar 

  44. Atchison CR, West AB, Balakumaran A, et al. Drug enterocyte adducts: possible causal factors for diclofenac enteropathy in rats. Gastroenterology 2000; 119: 1537–47

    Article  PubMed  CAS  Google Scholar 

  45. Boelsterli UA. Acyl glucuronides in idiosyncratic toxicity. In: Subrahmanyan V, Subrahmanyan V, editors. Mechanisms, models and predictions of idiosyncratic drug toxicity. Brentwood (MO): ISE Press. In press

  46. Hargus SJ, Martin BM, George JW, et al. Covalent modification of rat liver dipeptidyl peptidase IV(CD26) by the nonsteroidal anti-inflammatory drug diclofenac. Chem Res Toxicol 1995; 8: 993–6

    Article  PubMed  CAS  Google Scholar 

  47. Bailey MJ, Worrall S, de Jersey J, et al. Zomepirac acyl glucuronide covalently modifies tubulin in vitro and in vivo and inhibits its assembly in an in vitro system. Chem Biol Interact 1998; 115: 153–66

    Article  PubMed  CAS  Google Scholar 

  48. Chiou YJ, Tomer KB, Smith PC. Effect of nonenzymatic glycation of albumin and superoxide dismutase by glucuronic acid and suprofen acyl glucuronide on their functions in vitro. Chem Biol Interact 1999; 121: 141–59

    Article  PubMed  CAS  Google Scholar 

  49. Kretz-Rommel A, Boelsterli UA. Cytotoxic activity of T cells and non-T cells from diclofenac-immunized mice against cultured syngeneic hepatocytes exposed to diclofenac. Hepatology 1995; 22: 213–22

    Article  PubMed  CAS  Google Scholar 

  50. Worrall S, Dickinson RG. Rat serum albumin modified by diflunisal acyl glucuronide is immunogenic in rats. Life Sci 1995; 56: 1921–30

    Article  PubMed  CAS  Google Scholar 

  51. Zia-Amirhosseini P, Harris RZ, Brodsky FM, et al. Hypersensitivity to nonsteroidal anti-inflammatory drugs. Nat Med 1995; 1: 2–4

    Article  PubMed  CAS  Google Scholar 

  52. Souto EO, Miyoshi H, Dubois RN, et al. Kupffer cell-derived cyclooxygenase-2 regulates hepatocyte Bcl-2 expression in choledocho-venous fistula rats. Am J Physiol Gastrointest Liver Physiol 2001; 280: G805–11

    PubMed  CAS  Google Scholar 

  53. Reilly TP, Brady JN, Marchik MR, et al. A protective role for cyclooxygenase-2 in drug-induced liver injury in mice. Chem Res Toxicol 2001; 14: 1620–8

    Article  PubMed  CAS  Google Scholar 

  54. Choy EHS, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 2001; 344: 907–16

    Article  PubMed  CAS  Google Scholar 

  55. Swingle KF, Moore GGI, Grant TJ. 4-Nitro-2-phenoxymethane sulfoanilide (R-805): a chemically novel anti-inflammatory agent. Arch Int Pharmacodyn Ther 1976; 221: 132–9

    PubMed  CAS  Google Scholar 

  56. Rufer C, Schillinger E, Bottcher I, et al. Non-steroidal anti-inflammatories - XII: mode of action of anti-inflammatory methane sulfonanilides. Biochem Pharmacol 1982; 31: 3591–6

    Article  PubMed  CAS  Google Scholar 

  57. Rabasseda X. Nimesulide: a selective cyclooxygenase 2 inhibitor anti-inflammatory drug. Drugs Today 1996; 32Suppl. D: 1–23

    Google Scholar 

  58. Bennett A. Overview of nimesulide. Rheumatology 1999; 38Suppl. 1: 1–3

    Article  Google Scholar 

  59. Garcia-Nieto R, Perez C, Checa A, et al. Molecular model of the interaction between nimesulide and human cyclooxygenase-2. Rheumatology 1999; 38Suppl. 1: 14–8

    Article  PubMed  CAS  Google Scholar 

  60. Shah AA, Murray FE, Fitzgerald DJ. The in vivo assessment of nimesulide cyclooxygenase-2 selectivity. Rheumatology 1999; 38Suppl. 1: 19–23

    Article  PubMed  CAS  Google Scholar 

  61. Bennett A, Villa G. Nimesulide: an NSAID that preferentially inhibits COX-2, and has various unique pharmacological activities. Exp Opin Pharmacother 2000; 1: 277–86

    Article  CAS  Google Scholar 

  62. Kataoka H, Horie Y, Koyama R, et al. Interaction between NSAIDs and steroid in rat stomach: safety of nimesulide as a preferential COX-2 inhibitor in the stomach. Dig Dis Sci 2000; 45: 1366–75

    Article  PubMed  CAS  Google Scholar 

  63. Bennett A. Nimesulide: a well-established cyclooxygenase-2 inhibitor with many other pharmacological properties relevant to inflammatory diseases. In: Vane JR, Botting RM, editors. Therapeutic roles of selective COX-2 inhibitors. London: William Harvey Press, 2001: 524–40

    Google Scholar 

  64. Bevilacqua M, Vago T, Baldi G, et al. Nimesulide decreases superoxide production by inhibiting phosphodiesterase type IV. Eur J Pharmacol 1994; 268: 415–23

    Article  PubMed  CAS  Google Scholar 

  65. Rainsford KD. An analysis from clinico-epidemiological data of the principal adverse events from the COX-2 selective NSAID, nimesulide, with particular reference to hepatic injury. Inflammopharmacol 1998; 6: 203–21

    Article  CAS  Google Scholar 

  66. Carniato A, Vaglia A. Hepatitis-like syndrome induced by nimesulide [case report]. Infezioni Med 1997; 4: 265

    Google Scholar 

  67. Grignola JC, Arias L, Rondan M, et al. Hepatotoxicity associated with nimesulide. Arch Med Int 1998; 20: 13–8

    Google Scholar 

  68. Van Steenbergen W, Peeter P, De Bondt J, et al. Nimesulide-induced acute hepatitis: evidence from six cases. J Hepatol 1998; 29: 135–41

    Article  PubMed  Google Scholar 

  69. McCormick PA, Kennedy F, Curry M, et al. COX 2 inhibitor and fulminant hepatic failure. Lancet 1999; 353: 40–1

    Article  PubMed  CAS  Google Scholar 

  70. Romero-Gomez M, Santos MN, Fernandez MAO, et al. Acute cholestatic hepatitis induced by nimesulide. Liver 1999; 19: 164–5

    Article  PubMed  CAS  Google Scholar 

  71. Weiss P, Mouallem M, Bruck R, et al. Nimesulide-induced hepatitis and acute liver failure. Isr Med Assoc J 1999; 1: 89–91

    PubMed  CAS  Google Scholar 

  72. Andrade RJ, Lucena MI, Fernandez MC, et al. Fatal hepatitis associated with nimesulide [letter]. J Hepatol 2000; 32: 174

    Article  PubMed  CAS  Google Scholar 

  73. Schattner A, Sokolovskaya N, Cohen J. Fatal hepatitis and renal failure during treatment with nimesulide. J Intern Med 2000; 247: 153–5

    Article  PubMed  CAS  Google Scholar 

  74. Lucena MI, Camargo R, Andrade RJ, et al. Comparison of two clinical scales for causality assessment in hepatotoxicity. Hepatology 2001; 33: 123–30

    Article  PubMed  CAS  Google Scholar 

  75. Merlani G, Fox M, Oehen HP, et al. Fatal hepatotoxicity secondary to nimesulide. Eur J Clin Pharmacol 2001; 57: 321–6

    Article  PubMed  CAS  Google Scholar 

  76. Sbeit W, Krivoy N, Shiller M, et al. Nimesulide-induced acute hepatitis. Ann Pharmacother 2001; 35: 1049–52

    Article  PubMed  CAS  Google Scholar 

  77. Belton KJ. Attitude survey of adverse drug-reaction reporting by health care professionals across the European Union. Eur J Clin Pharmacol 1997; 52: 423–7

    Article  PubMed  CAS  Google Scholar 

  78. Alvarez-Requeio A, Carvajal A, Bégaud B, et al. Underreporting of adverse drug reactions: estimate based on a spontaneous reporting scheme and a sentinel system. Eur J Clin Pharmacol 1998; 54: 483–8

    Article  Google Scholar 

  79. Kaufman DW, Shapiro S. Epidemiological assessment of drug-induced disease. Lancet 2000; 356: 1339–43

    Article  PubMed  CAS  Google Scholar 

  80. Kaplowitz N. Drug-induced liver disorders: implications for drug development and regulation. Drug Saf 2001; 24(7): 483–90

    Article  PubMed  CAS  Google Scholar 

  81. Helsinn. Internal document. (Data on file.)

  82. Krähenbühl S, Reichen J. Drug hepatotoxicity. In: Bacon BR, DiBisceglie AM, et al., editors. Liver disease diagnosis and management. New York: Churchill Livingstone, 2000: 294–309

    Google Scholar 

  83. Davis R, Brogden RN. Nimesulide: an update of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs 1994; 48: 431–54

    Article  PubMed  CAS  Google Scholar 

  84. Park BK, Kitteringham NR, Powell H, et al. Advances in molecular toxicology: towards understanding idiosyncratic drug toxicity. Toxicology 2000; 153: 39–60

    Article  PubMed  CAS  Google Scholar 

  85. Berson A, Wolf C, Berger V, et al. Generation of free radicals during the reductive metabolism of the nitroaromatic compound, nilutamide. J Pharmacol Exp Ther 1991; 257: 714–9

    PubMed  CAS  Google Scholar 

  86. Fau D, Berson A, Eugene D, et al. Mechanism for the hepatotoxicity of the antiandrogen, nilutamide: evidence suggesting that redox cycling of this nitroaromatic drug leads to oxidative stress in isolated hepatocytes. J Pharmacol Exp Ther 1992; 263: 69–77

    PubMed  CAS  Google Scholar 

  87. Paterna JC, Boess F, Stäubli A, et al. Antioxidant and cytoprotective properties of D-tagatose in cultured murine hepatocytes. Toxicol Appl Pharmacol 1997; 148: 117–25

    Article  Google Scholar 

  88. De Angelis I, Vincentini O, Brambilla G, et al. Characterization of furazolidine apical-related effects to human polarized intestinal cells. Toxicol Appl Pharmacol 1998; 152: 119–27

    Article  PubMed  Google Scholar 

  89. Ritter CL, Malejka-Giganti D. Nitroreduction of nitrated and C-9 oxidized fluorenes in vitro. Chem Res Toxicol 1998; 11: 1361–7

    Article  PubMed  CAS  Google Scholar 

  90. Mason RP, Holtzman JL. The mechanism of microsomal and mitochondrial nitroreductase: electron spin resonance evidence for nitroaromatic free radical intermediates. Biochemistry 1975; 14: 1626–32

    Article  PubMed  CAS  Google Scholar 

  91. Squella JA, Gonzalez P, Bollo S, et al. Electrochemical generation and interaction study of the nitro anion from nimesulide. Pharm Res 1999; 16: 161–4

    Article  PubMed  CAS  Google Scholar 

  92. Cribb AE, Miller M, Leeder JS, et al. Reactions of the nitroso and hydroxylamine metabolites of sulfamethoxazole with reduced glutathione: implications for idiosyncratic toxicity. Drug Metab Dispos 1991; 19: 900–6

    PubMed  CAS  Google Scholar 

  93. Cribb AE, Nuss CE, Alberts DW, et al. Covalent binding of sulfamethoxazole reactive metabolites to human and rat liver subcellular fractions assessed by immunochemical detection. Chem Res Toxicol 1996; 9: 500–7

    Article  PubMed  CAS  Google Scholar 

  94. Bernareggi A. Clinical pharmacokinetics of nimesulide. Clin Pharmacokinet 1998; 35(4): 247–74

    Article  PubMed  CAS  Google Scholar 

  95. Helsinn. Internal document no. 6026. (Data on file.)

  96. Mingatto FE, Cardozo dos Santos A, Rodrigues T, et al. Effects of nimesulide and its reduced metabolite on mitochondria. Br J Pharmacol 2000; 131: 1154–60

    Article  PubMed  CAS  Google Scholar 

  97. Caparroz-Assef SM, Salgueiro-Pagadigorria CL, Bersani-Amado CA, et al. The uncoupling effect of the nonsteroidal anti-inflammatory drug nimesulide in liver mitochondria from adjuvant-induced arthritic rats. Cell Biochem Funct 2001; 19: 117–24

    Article  PubMed  CAS  Google Scholar 

  98. Sigthorsson G, Jacob M, Wrigglesworth J, et al. Comparison of indomethacin and nimesulide, a selective cyclooxygenase-2 inhibitor, on key pathophysiologic steps in the pathogenesis of nonsteroidal anti-inflammatory drug enteropathy in the rat. Scand J Gastroenterol 1998; 33: 728–35

    Article  PubMed  CAS  Google Scholar 

  99. Streetz K, Leifeld L, Grundmann D, et al. Tumor necrosis factor α in the pathogenesis of human and murine fulminant hepatic failure. Gastroenterology 2000; 119: 446–60

    Article  PubMed  CAS  Google Scholar 

  100. Kast RE. Tumor necrosis factor has positive and negative self regulatory feed back cycles centered around cAMP. Int J Immunopharmacol 2000; 22: 1001–6

    Article  PubMed  CAS  Google Scholar 

  101. Kast RE. Non-steroidal anti-inflammatory drugs might also be pro-inflammatory by increasing tumor necrosis factor. Biomed Pharmacother 2000; 54: 168–9

    Article  PubMed  CAS  Google Scholar 

  102. Azab A, Fraifeld V, Kaplanski J. Nimesulide prevents lipopolysaccharide-induced elevation in plasma tumor necrosis factor-α in rats. Life Sci 1998; 63: PL323–7

    Article  CAS  Google Scholar 

  103. Pomerantz JL, Baltimore D. A cellular rescue team. Nature 2000; 406: 26–9

    Article  PubMed  CAS  Google Scholar 

  104. Rieder M, Shear NH, Kanee A, et al. Prominence of slow acetylator phenotype among patients with sulfonamide hypersensitivity reactions. Clin Pharmcol Ther 1991; 49: 13–7

    Article  CAS  Google Scholar 

  105. Vatsis KP, Weber W. Acetyltransferases. In: Guengerich FP, editor. Comprehensive toxicology. Vol 3: Biotransformation. New York: Elsevier, 1997: 385–99

    Google Scholar 

  106. Upton A, Johnson N, Sandy J, et al. Arylamine N-acetyltransferases: of mice, men and microorganisms. Trends Pharmacol Sci 2001; 22: 140–6

    Article  PubMed  CAS  Google Scholar 

  107. Sullivan JR, Shear NH. The drug hypersensitivity syndrome: what is the pathogenesis? Arch Dermatol 2001; 137: 357–64

    PubMed  CAS  Google Scholar 

  108. Trepanier LA, Miller JL. NADH-dependent reduction of sulphamethoxazole hydroxylamine in dog and human liver microsomes. Xenobiotica 2000; 30: 1111–21

    Article  PubMed  CAS  Google Scholar 

  109. Nuñez-Vergara LJ, Sturm JC, Olea-Azar C, et al. Electrochemical, UV-visible and EPR studies on nitrofurantoin: nitro anion radical generation and its interaction with glutathione. Free Radic Res 2000; 32: 399–409

    Article  PubMed  Google Scholar 

  110. Fau D, Eugene D, Berson A, et al. Toxicity of the antiandrogen flutamide in isolated rat hepatocytes. J Pharmacol Exp Ther 1994; 269: 954–62

    PubMed  CAS  Google Scholar 

  111. Nuñez-Vergara LJ, Farias D, Bollo S, et al. An electrochemical evidence of free radicals formation from flutamide and its reactivity with endo/xenobiotics of pharmacological relevance. Bioelectrochemistry 2001; 53: 103–10

    Article  PubMed  Google Scholar 

  112. Naisbitt DJ, O’Neill PM, Pirmohamed M, et al. Synthesis and reactions of nitroso sulfamethoxazole with biological nucleophiles: implications for immune-mediated toxicity. Bioorg Med Chem Lett 1996; 6: 1511–6

    Article  CAS  Google Scholar 

  113. Gill HJ, Hough SJ, Naisbitt DJ, et al. The relationship between the disposition and immunogenicity of sulfamethoxazole in the rat. J Pharmacol Exp Ther 1997; 282: 795–801

    PubMed  CAS  Google Scholar 

  114. Souness JE, Griffin M, Maslen C, et al. Evidence that cyclic AMP phosphodiesterase inhibitors suppress TNF alpha generation from human monocytes by interacting with a ‘lowaffinity’ phosphodiesterase 4 conformer. Br J Pharmacol 1996; 118: 649–58

    Article  PubMed  CAS  Google Scholar 

  115. Gantner F, Küsters S, Wendel A, et al. Protection from T cell-mediated murine liver failure by phosphodiesterase inhibitors. J Pharmacol Exp Ther 1997; 280: 53–60

    PubMed  CAS  Google Scholar 

  116. Yoshimura T, Kurita C, Nagao T, et al. Effects of cAMP-phosphodiesterase isozyme inhibitor on cytokine production by lipopolysaccaride-stimulated human peripheral blood mononuclear cells. Gen Pharmacol 1997; 29: 633–8

    Article  PubMed  CAS  Google Scholar 

  117. Reuter BK, Wallace JL. Phosphodiesterase inhibitors prevent NSAID enteropathy independently of effects on TNF-α release. Am J Physiol Gastrointest Liver Physiol 1999; 40: G847–54

    Google Scholar 

  118. Bjarnason I, Thjodleifsson B. Gastrointestinal toxicity of nonsteroidal anti-inflammatory drugs: the effect of nimesulide compared with naproxen on the human gastrointestinal tract. Rheumatology 1999; 38Suppl. 1: 24–32

    Article  PubMed  CAS  Google Scholar 

  119. Kapicioglu S, Baki AH, Sari M, et al. Does nimesulide induce gastric mucosal damage? A double-blind randomized placebo-controlled trial. Hepatogastroenterology 2000; 47: 1183–5

    PubMed  CAS  Google Scholar 

  120. Laudanno OM, Cesolari JA, Esnarriaga J, et al. In vivo selectivity of nonsteroidal anti-inflammatory drugs and gastrointestinal ulcers in rats. Dig Dis Sci 2000; 45: 1359–65

    Article  PubMed  CAS  Google Scholar 

  121. Shah AA, Thjodleifsson B, Murray FE, et al. Selective inhibition of COX-2 in humans is associated with less gastrointestinal injury: a comparison of nimesulide and naproxen. Gut 2001; 48: 339–46

    Article  PubMed  CAS  Google Scholar 

  122. Rainsford KD. Relationship of nimesulide safety to its pharmacokinetics: assessment of adverse reactions. Rheumatology 1999; 38Suppl. 1: 4–10

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I wish to thank Helsinn Healthcare SA, Pambio-Noranco, Switzerland, for generously disclosing unpublished data on nimesulide covalent binding.

The author is an independent consultant for a number of pharmaceutical companies including Helsinn Healthcare SA. The preparation ofthis review was financially supported by Helsinn Healthcare SA. However, the article reflects the personal opinion of the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs A. Boelsterli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boelsterli, U.A. Mechanisms of NSAID-Induced Hepatotoxicity. Drug-Safety 25, 633–648 (2002). https://doi.org/10.2165/00002018-200225090-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200225090-00003

Keywords

Navigation