10Aug 2019

TRIORGANOTIN PHOSPHONATES POLYMERIC CHAINS - SYNTHESIS, INFRARED, MOSSBAUER AND SINGLE CRYSTAL CHARACTERIZATION:THE FIRST ORGANOTIN(IV) PH2- BRIDGED.

  • Laboratoire de Chimie Min?rale et Analytique (LA.CHI.MI.A.), D?partement de Chimie, Facult? des Sciences et Techniques, Universit? Cheikh Anta Diop, Dakar, S?n?gal.
  • D?partement de Physique-Chimie, Facult? des Sciences et Technologies de l?Education et de la Formation (FASTEF), Universit? Cheikh Anta Diop, Dakar, S?n?gal.
  • Institut de Chimie de la Mati?re Condens?e de Bordeaux, CNRS-Universit? de Bordeaux, 87 Avenue du Docteur A. Schweitzer 33608 Pessac, France.
  • D?partement de Chimie, Universit? de Montr?al, 2900 Boulevard ?douard-Montpetit, Montr?al, Qu?bec, Canada, H3C 3J7.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

Two triorganotin(IV) phosphonate compounds were isolated and structurally investigated by infrared and M?ssbauer spectroscopies and X-ray crystallography. The reactionoftrimethyltin(IV) chloride (SnMe3Cl) and hexamethylenetetraammonium hydrogen methylphosphonate[CH3PO3H][N4(CH2)6H] led to the formation of [C10H34O4P2Sn3] (1) which crystallizes in the Monoclinic space group Pn with Z = 2, a = 8.4955 (2) ?, b = 11.318 (3) ?, c = 11.902 (2) ?, β = 90.9340 (10)? and V = 1144.2 (4) ?3. An uncommon decomposition of methylphosphonate occurred during the reaction process giving rise to the formation of dimers of [SnMe3PH2SnMe3]+. The structure of 1 consists of an anionic chain of [CH3PO3(SnMe3PH2SnMe3)]? linked to [SnMe3(H2O)]+ moieties through Sn?O bonds involving the remaining oxygen atoms of the methylphosphonates. In the chain, each SnMe3 residue is coordinated by one methylphosphonate and one phosphor atom, in a trans-trigonal bipyramidal PSnC3O geometry. The environment at tin atoms in both SnMe3 moieties is an octahedron. The methylphosphonate anion is otherwise in a general position and behaves as a tri-coordinating ligand. The reactionoftriphenyltin(IV) hydroxide (SnPh3OH) and phosphorous acid (HPO(OH)2) led to the formation of [C36H31O3PSn2] (2) which crystallizes in the Monoclinic space group P2/n with Z = 4, a = 11.7966 (4) ?, b = 10.1953 (4) ?, c = 27.6715 (10) ?, β = 94.600 (2)? and V = 3317.3 (2) ?3. The structure of 2 is comprised of an anionic chain of [HPO3(SnPh3)]? linked to SnPh3 moieties through Sn?O bonds involving the remaining oxygen atoms of the hydrogenphosphonates. In the chain the SnPh3 residues are each one coordinated by two hydrogenphosphonates in a trans-trigonal bipyramidal OSnC3O arrangement. The geometry at tin atoms within the monocoordinated SnPh3 moieties connected to the chain is a distorted tetrahedron. The hydrogenphosphonate anion is in a general arrangement and behaves as a tri-O-coordinating ligand.


  1. Bao, S.-S. and Zheng, L.-M. (2016): Magnetic materials based on 3d metal phosphonates. Coord. Chem. Rev., 319: 63?85.
  2. Hamchaoui, F., Alonzo, V., Venegas-Yazigi, D., Rebbah, H. and LeFur, E. (2013a): Six novel transition-metal hydrogenphosphonate compounds, with structure related to yavapaiite: Crystal structures and magnetic and thermal properties of AI[MIII(HPO3)2] (A=K, NH4, Rb and M=V, Fe). Solid State Chem., 198: 295?302.
  3. Metal Phosphonate Chemistry: From Synthesis to Applications, Editors A. Clearfield and K.Demadis, the Royal Society of Chemistry, 2012.
  4. Mao, J.-G. (2007): Structures and luminescent properties of lanthanide phosphonates. Coord. Chem. Rev., 251: 1493?1520.
  5. Fernandez-Armas, S., Mesa, J. L., Pizarro, J. L., Pena, A., Chapman, J. P. and Arriortua, M. I. (2004a): Hydrothermal synthesis, crystal structure and spectroscopic and magnetic properties (C2H10N2)[Mn09Co0.91(HPO3)4]. Mat. Res. Bull., 39: 1779?1790.
  6. Mallouk, T. E., Kim, H. N., Oliver, P. J. and Keller, S. W. (1996): Comprehensive Supramolecular Chemistry, Edited by G. Alberti& T. Bein, Pergamon, New York, 7.
  7. Cao, G., Hong, H. G. and Mallouk, T. E. (1992): Layered metal phosphates and phosphonates: from crystals to monolayers. Acc. Chem. Res., 25(9): 420?
  8. Etaiw, S. E. H., Abd El-Aziz, D. M. and Ali, E. A. (2019): Crystal structure, cytotoxicity and biological activity of hydrogen bonded networks based on dimethyltin (IV) and bipodal ligands. J. Organomet. Chem., 894: 43?
  9. Mao, W., Bao, K., Feng, Y., Wang, Q., Li, J. and Fan, Z. (2015): Synthesis, crystal structure, and fungicidal activity of trioriganotin(IV) 1-methyl-1H-imidazole-4-carboxylates. Main Group Met. Chem., 38: 27?30.
  10. Devendra, R., Edmonds, N. R. and Sohnel, T. (2015): Organotin carboxylate catalyst in urethane formation in a polar solvent: an experimental and computational study. RSC Adv., 5: 48935?48945.
  11. Carraher, C. E., Roner, M. R., Frank, J., Slawek, P., Mosca, F., Shahi, K., Moric-Johnson, A. and Miller, L. (2019). Organotin Polymers for the Control of Pancreatic Cancer, OBM Hepatology and Gastroenterology. 3(2):doi:10.21926/obm.hg.1902019.
  12. Carraher, C., Roner, M., Lynch, M., Moric-Johnson, A., Miller, L., Slawek, P., Mosca, F. and Frank, J. (2018). Organotin poly(ester ethers) from salicylic acid and their ability to inhibit human cancer cell lines, Journal of Clinical Research in Oncology. 1(1):1-11.
  13. Roner, M., Shahi, K., Battin, A., Barot, G. and Arnold, T. (2014). Organotin Polymers As Chemotherapeutic Agents: Breast and Pancreatic Cancers, Journal of Polymer Materials. 31(1):1-14.
  14. Troev, K. D. (2006): Chemistry and Application of H-phosphonates, Edited by Elsevier, Chapter 5, pp. 253?
  15. Mahmoudkhani, A. H. and Langer, V. (2002): Structural correlations in methylphosphonate and hydrogenphosphonate salts: crystal structures of anilinium and ethylenediammoniummethylphosphonates. J. Mol. Struct., 609: 55?
  16. Fleck, M., Tillmanns, E. and Haussiih, S. (2000): Crystal structure of ethylenediammoniumhydrogenphosphite, (C2N2H8)(H3PO3)2. Z. Kristallogr. NCS, 215(1): 109?
  17. Paixao, J. A., Matos Beja, A., Silva, M. R. and Martin-Gil, J. (2000): Two anilinium salts: aniliniumhydrogenphosphite and aniliniumhydrogenoxalate hemihydrate. , C56: 1132?1135.
  18. H?nle, W., Walz, L. and von Schnering, H. G. (1990): EthylenediammoniumHydridotrioxophosphate(2-) [H3NCH2CH2NH3PHO3]. Z. Naturforsch, B45: 1251?1254.
  19. Ouarsal, R., Lachkar, M., Dusek, M., Albert, E. B., Castell?, J. B. C. and El Bali, B. (2016): Crystal structure of NaCd(H2PO3)3.H2O and spectroscopic study of NaM(H2PO3)3.H2O, M = Mn, Co, Ni, Zn, Mg and Cd. Polyhedron, 106: 132?137.
  20. Larrea, E. S., Mesa, J. L., Legarra, E., Aguayo, A. T. and Arriortua, M. I. (2016): Crystal structure of K75[FeII3.75FeIII1.25(HPO3)6].0.5H2O, an open-framework iron hydrogenphosphonate with mixed-valent FeII/FeIII ions. ActaCrystallogr., E72: 63?65.
  21. Berrocal, T., Mesa, J. L., Larre, E. and Arrieta, J. M. (2014): Crystal structure of (NH4)2[FeII5(HPO3)6], a new open-framework hydrogenphosphonate. Acta Crystallogr., E70: 309?311.
  22. Oh, G. N. and Burns, P. C. (2014): Solid-state actinide acid hydrogenphosphonates from phosphorous acid melts. Solid State Chem., 215: 50?56.
  23. Hamchaoui, F., Rebbah, H. and LeFur, E. (2013b): Ammonium diphosphitoindate(III).Acta Crystallogr., E69: i21?i22.
  24. Li, H., Zhang, L., Liu, L., Jiang, T., Yu, Y., Li, G., Huo, Q. and Liu, Y. (2009): Organic template-directed indium hydrogenphosphonate-oxalate hybrid material: Synthesis and characterization of a novel 3D |C6H14N2|[In2(HPO3)3(C2O4)] compound with intersecting channels. Inorg. Chem. Commun., 12: 1020?1023.
  25. Fernandez-Armas, S., Mesa, J. L., Pizarro, J. L., Lezama, L., Arriortua, M. I. and Rojo, T. (2004b): A new organically templated gallium(III)-doped chromium(III) fluorohydrogenphosphonate, (C2H10N2)[Ga98Cr0.02(HPO3)F3] hydrothermal synthesis, crystal structure and spectroscopic properties. J. Solid State Chem., 177: 765?771.
  26. Diop, C. A. K., Diop, L. and Russo, U. (1999): (Ph3Sn)2A? (A? = O4C2, O3Se, O3PH, O3AsPh, O3PCH3 and (Ph3Sn)3O4P: Synthesis, M?ssbauer, IR and NMR studies. Main Group Met. Chem., 22(4): 217?220.
  27. Diop, T., Diop, L., Fall, D. and van der Lee, A. (2012a): Dibutylammoniumbis(hydrogen methylphosphonato-κO)triphenylstannate(IV). ActaCrystallogr., E68: m1284?m1285.
  28. Driess, M., Merz, K. and Mons?, C. (2003): Synthesis of the first fluoro(phosphanyl)- and diphosphanyl-stannanes and surprising formation of [P(SnMe3)4]+SiF5−. Chem. Commun., 2608-2609.
  29. Martens, R., du Mont, W.-W., Jeske, J., Jones, P.G., Saak, W. and Pohl, S. (1995): Zumreaktionsverhalten von dialkyl(trichlorsilyl)phosphanen - verglichenmittrimethylsilylphosphanen - gegen?berdichlordimethylstannan: Austauschreaktionen and strukturencyclischerchlorstannylphosphan-dichlordimethylstannan-addukte. J.Organomet.Chem., 501(1-2): 251?261.
  30. Hanssgen, D., Aldenhoven, H. and Nieger, M. (1990): Einneues PH‐funktionellesDiphosphadistannetan: (tBu2SnPH)2 . Chem. Ber., 123: 1837?1839.
  31. Diop, T., Diop, L., Kociock-K?hn, G., Molloy, K. C. and Ardisson, J. D. (2013a): Synthesis, spectroscopic characterization and crystal and molecular structures of phenylphosphonato SnR3 (R = Ph, Me) derivatives. Main Group Met. Chem., 36(1-2): 29?34.
  32. Diop, T., Diop, L., Michaud, F. and Ardisson, J. D. (2013b): Et4N[NO3(SnClPh3)2(SnPh3NO3)]: a trinuclearorganostannate complex and related derivatives. Main Group Met. Chem., 36(3-4): 83?88.
  33. Diop, T., Diop, L., Da Silva, J. G. and Fall, D. (2012b): Supramolecular architecture in crystalline Bu2NH2(PhPO3H)2SnMe3. Main Group Met. Chem., 35(1-2): 63?65
  34. Diop, T., Diop, L., Diop, C. A. K., Molloy, K. C. and Kociock-K?hn, G. (2011a): Dicyclohexylammoniumtrimethylbis(hydrogen phenylphosphonato)stannate(IV). Acta. Crystallogr., E67: m1872?
  35. Diop, T., Diop, L., Molloy, K. C., Kociock-K?hn, G. and Stoeckli-Evans, H. (2011b): catena -Poly[[triphenyltin(IV)]-μ-phenylphosphinato-κ2O:O?]. Acta. Crystallogr., E67: m1674?
  36. Ribot, F., Sanchez, C., Biesemans, M., Mercier, F. A. G., Martins, J. C., Gielen, M. and Willem, R. (2001): Di-n Butyltin methyl and phenylphosphonates, Organometallics,20: 2593?2603.
  37. Adair, B., Natarajan, S. and Cheetham, A. K. (1998):Synthesis and structural characterization of a novel tin(II) phosphonate, Sn2(O3PCH3)(C2O4). Journal of Materials Chemistry, 8(6): 1477?1479.
  38. Chandrasekhar, V., Baskar, V. and Vittal, J. J. (2003): A New Structural Form of Tin in a Double O-Capped Cluster. J. Am. Chem. Soc., 125: 2392?
  39. Chandrasekhar, V., Baskar, V., Gopal, K. and Vittal, J. J. (2005): Organooxotin Cages, {[(n-BuSn)3(?3-O)(OC6H4-4-X)3]2[HPO3]4}, X ) H, Cl, Br, and I, in Double O-Capped Structures: Halogen-Bonding-Mediated Supramolecular Formation.Organometallics, 24: 4926?
  40. Mairychova, B., Stepnicka, P., Ruzicka, A., Dostal, L. and Jambor, R. (2014): Reactivity Studies on an Intramolecularly Coordinated Organotin(IV). Organometallics, 33(12): 3021?
  41. Bou?lam, M., Willem, R., Biesemans, M., Mahieu, B., Meunier-Piret, J. and Gielen, M. (1991): Synthesis, characterization and in vitro antitumor activity of diorganotin derivatives of substituted salicylic acids and analogs. Crystal structure of Bis(5-methoxysalicylato-di-n-butyltin)oxide. Main Group Met. Chem., 14: 41?56.
  42. Nonius (2003). COLLECT. Nonius BV, Delft, The netherlands.
  43. Otwinowski, Z. and Minor, W. (1997): Methods in Enzymology. Macromolecular Crystallography, Part A, Edited by C. W. Carter Jr & R. M. Sweet, New York: Academic Press, 276: pp. 307?326.
  44. Sheldrick, G. M. (2008): A short history of?SHELX. ActaCrystallogr., A64: 112?122.
  45. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. and Puschmann, H. (2009): OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 42: 339?341.
  46. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. and Wood, P. A. (2008): Mercury CSD 2.0 ? new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr., 41: 466?470.
  47. Apex2, Crystallographic Software, Suite, Bruker AXS Inc., Madison, Wisconsin (USA) 2013.
  48. Saint (version 8.35A-2013), Area Detector Integration Software, Bruker AXS Inc., Madison, Wisconsin (USA) 2013.
  49. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. and Stalke, D. (2015): Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. Appl. Crystallogr., 48: 3?10.
  50. Nakamoto, K. (1997): Infrared and Raman Spectra of Inorganic and Coordination Compounds, Edited by John Wiley and Sons, 5th Edition.
  51. Bancroft, G. M. and Platt, R. H. (1972): M?ssbauer spectra of inorganic compounds: Bonding and structure, Advances in Inorganic Chemistry and Radiochemistry, Edited by H. J. Emeleus and A. G. Sharpe, Academic Press, New York, 15, pp. 59?258.
  52. Parish, R. V. (1984): "Structure and bonding in tin compounds" in "Mossbauer spectroscopy applied to inorganic chemistry", G. L. Lond Ed., Plenum Press, New York, 1, pp. 530.
  53. Diop, M. B., Diop, L., Plasseraud, L. and Maris, T. (2015): Crystal structure of 2-methyl-1H-imidazol-3-ium aquatrichlorido(oxalato-κ2O,O?)stannate(IV). ActaCrystallogr., E71: 520?
 

[Mouhamadou Birame Diop, Mouhamadou Sembene Boye, Aminata Diasse - Sarr, Libasse Diop, Philippe Guionneau and Thierry Maris. (2019); TRIORGANOTIN PHOSPHONATES POLYMERIC CHAINS - SYNTHESIS, INFRARED, MOSSBAUER AND SINGLE CRYSTAL CHARACTERIZATION:THE FIRST ORGANOTIN(IV) PH2- BRIDGED. Int. J. of Adv. Res. 7 (Aug). 266-278] (ISSN 2320-5407). www.journalijar.com


Mouhamadou Birame Diop
Laboratoire de Chimie Minérale et Analytique (LA.CHI.MI.A.), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal

DOI:


Article DOI: 10.21474/IJAR01/9499      
DOI URL: http://dx.doi.org/10.21474/IJAR01/9499