Skip to main content
Log in

Electrochemical Determination of Chromium(VI) in River Water with Gold Nanoparticles-Graphene Nanocomposites Modified Electrodes

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this study, nanocomposites of ligand-free gold nanoparticles that are anchored onto the graphene surface (Graphene/ AuNPs) were synthesized by a sonochemical method in a single reaction step. A highly sensitive amperometric sensor using Graphene/AuNPs is proposed for the determination of trace hexavalent chromium Cr(VI) in environmental water samples. Compared with a gold electrode, a glassy carbon electrode and a AuNPs modified glassy carbon electrode, the Graphene/AuNPs modified glassy carbon electrode exhibits the highest electrocatalytic activity and stability towards the reduction of Cr(VI), based on the results by cyclic voltammetry and electrochemical AC impedance studies. This study shows that the Graphene/AuNPs-based sensor can detect Cr(VI) with a low detection limit of 10 nM (~0.5 μg/L), a wide dynamic range of 0 to 20 μM (R = 0.999) and very good selectivity and reproducibility. The electrode is applied to the determination of Cr(VI) in river samples with satisfactory recovery values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Katz and H. Salem, J. Appl. Toxicol. Rev., 1993, 13, 217.

    Article  CAS  Google Scholar 

  2. R. M. C. Romero, M. C. Y. Biurrun, and M. P. B. Barrera, Anal. Chim. Acta, 1996, 327, 37.

    Article  Google Scholar 

  3. D. Mohan and C. Pittman, J. Hazard. Mater., 2006, 137, 762.

    Article  CAS  PubMed  Google Scholar 

  4. G. Vos, Fresenius’Z. Anal. Chem., 1985, 320, 556.

    Article  CAS  Google Scholar 

  5. N. Unceta, F. Seby, J. Malherbe, and O. F. X. Donard, Anal. Bioanal. Chem., 2010, 397, 1097.

    Article  CAS  PubMed  Google Scholar 

  6. D. G. Themelis, F. S. Kika, and A. Economou, Talanta, 2006, 69, 615.

    Article  CAS  PubMed  Google Scholar 

  7. B. Wen, X. Q. Shan, and J. Lian, Talanta, 2002, 56, 681.

    Article  CAS  PubMed  Google Scholar 

  8. V. Gomez and M. P. Callao, TrAC, Trends Anal. Chem., 2006, 25, 1006.

    Article  CAS  Google Scholar 

  9. C. M. Welch, O. Nekrassova, and R. G. Compton, Talanta, 2005, 65, 74.

    CAS  PubMed  Google Scholar 

  10. R. T. Kachoosangi and R. G. Compton, Sens. Actuators, B, 2013, 178, 555.

    Article  CAS  Google Scholar 

  11. O. D. Renedo, L. R. Espelt, N. G. Astorgano, and M. J. A. Martinez, Talanta, 2008, 76, 854.

    Article  Google Scholar 

  12. B. Liu, L. Lu, M. Wang, and Y. Zi, J. Chem. Sci., 2008, 120, 493.

    Article  CAS  Google Scholar 

  13. R. Ouyang, S. A. Bragg, J. Q. Chambers, and Z. L. Xue, Anal. Chim. Acta, 2012, 722, 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. H. D. Nguyen, T. T. L. Nguyen, K. M. Nguyen, T. A. T. Tran, A. M. Nguyen, and Q. H. Nguyen, Am. J. Anal. Chem., 2015, 6, 457.

    Article  CAS  Google Scholar 

  15. M. C. Tsai and P. Y. Chen, Talanta, 2008, 76, 533.

    Article  CAS  PubMed  Google Scholar 

  16. B. K. Jena and C. R. Raj, Talanta, 2008, 76, 161.

    Article  CAS  PubMed  Google Scholar 

  17. W. Jin, G. Wu, and A. Chen, Analyst, 2014, 139, 235.

    Article  CAS  PubMed  Google Scholar 

  18. C. Santhosh, M. Saranya, R. Ramachandran, S. Felix, V. Velmurugan, and A. N. Grace, J. Nanotechnol., 2014, 2014, 1.

    Article  Google Scholar 

  19. Y. Wang, B. Song, J. Xu, and S. Hu, Microchim. Acta, 2015, 182, 711.

    Article  CAS  Google Scholar 

  20. A. Benvidi, A. D. Firouzabadi, M. M. Ardakani, B. B. F. Mirjalili, and R. Zare, J. Electroanal. Chem., 2015, 736, 22.

    Article  CAS  Google Scholar 

  21. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, Electroanalysis, 2010, 22, 1027.

    Article  CAS  Google Scholar 

  22. S. X. Guo, S. F. Zhao, A. M. Bond, and J. Zhang, Langmuir, 2012, 28, 5275.

    Article  CAS  PubMed  Google Scholar 

  23. C. Xu, X. Wang, and J. Zhu, J. Phys. Chem. C, 2008, 112, 19841.

    Article  CAS  Google Scholar 

  24. M. Haruta, Catal. Today, 1997, 36, 153.

    Article  CAS  Google Scholar 

  25. J. Jin, H. Kumeta, F. Takahashi, and Y. Asakura, Chem. Lett., 2009, 38, 292.

    Article  CAS  Google Scholar 

  26. Y. Mori, N. Kitamoto, and K. Tsuchiya, J. Chem. Eng. Jpn., 2005, 38, 283.

    Article  CAS  Google Scholar 

  27. K. Okitsu, M. Ashokkumar, and F. Grieser, J. Phys. Chem. B, 2005, 109, 20673.

    Article  CAS  PubMed  Google Scholar 

  28. K. Vinodgopal, B. Neppolian, I. V. Lightcap, F. Grieser, M. Ashokkumar, and P. V. Kamat, J. Phys. Chem. Lett., 2010, 1, 1987.

    Article  CAS  Google Scholar 

  29. A. J. Bard and L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications”, 2nd ed., 2001, John Wiley and Sons, New York.

    Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant No.16K05813.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiye Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sari, T.K., Takahashi, F., Jin, J. et al. Electrochemical Determination of Chromium(VI) in River Water with Gold Nanoparticles-Graphene Nanocomposites Modified Electrodes. ANAL. SCI. 34, 155–160 (2018). https://doi.org/10.2116/analsci.34.155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.34.155

Keywords

Navigation