Skip to main content
Log in

Rapid Discrimination of Closely Related Seed Herbs (Cumin, Caraway, and Fennel) by Direct Analysis in Real Time Mass Spectrometry (DART-MS)

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Direct analysis in real time mass spectrometry (DART-MS) was applied as a rapid method for the discrimination of the spices and traditional medicines cumin (Cuminum cyminum L.), caraway (Carum carvi L.), and fennel (Foeniculum vulgare Mill.). The seeds of these plants were analyzed without sample preparation by DART ion source coupled with quadrupole time-of-flight (QTOF) tandem mass spectrometry. The relatively clean DART spectra showed characteristic patterns, fingerprints, for each herb. It was found that a marker compound can be assigned to each species that can identify unambiguously these plants. Principal component analysis has also been used to analyze the DART-MS data of these seed herbs. Crispanone, carvone, and fenchone are the dominant compounds in the positive DART spectra of cumin, caraway, and fennel, respectively. Crispanone was first time identified as a constituent of cumin. Furthermore, the collision-induced dissociation (CID) behavior of the [M+NH4]+ ion of crispanone was also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. S. Iacobellis, P. L. Cantore, F. Capasso, and F. Senatore, J. Agric. Food Chem., 2005, 53, 57.

    Article  CAS  PubMed  Google Scholar 

  2. Gagandeep, S., E. Mendiz, A. R. Rao, and R. K. Kale, Nutr. Cancer, 2003, 47, 171.

    Article  Google Scholar 

  3. A. U. Rahman, M. I. Choudhary, A. Farooq, A. Ahmed, M. Z. Iqbal, B. Demirci, F. Demirci, and K. H. Can Baser, J. Chem. Soc. Pak., 2000, 22, 60.

    Google Scholar 

  4. I. Samojlik, N. Lakic, N. Mimica-Dukic, K. Dakovic-Svajcer, and B. Bozin, J. Agric. Food Chem., 2010, 58, 8848.

    Article  CAS  PubMed  Google Scholar 

  5. G. Zheng, P. M. Kenney, and L. K. T. Lam, Planta Med., 1992, 58, 338.

    Article  CAS  PubMed  Google Scholar 

  6. W. R. Diao, Q. P. Hu, H. Zhang, and J. G. Xu, Food Control, 2014, 35, 109.

    Article  CAS  Google Scholar 

  7. G. Singh, S. Maurya, M. P. de Lampasona, and C. Catalanm, Food Control, 2006, 77, 745.

    Article  Google Scholar 

  8. M. Pradhan, S. Sribhuwaneswari, D. Karthikeyan, S. Minz, P. Sure, A. N. Chandu, U. Mishra, K. Kamalakannan, A. Saravanankumar, and T. Sivakumar, Res. J. Pharm. Technol., 2008, 7, 450.

    Google Scholar 

  9. S. Azeez, “Chemistry of Spices”, ed. V. A. Parthasarathy, B. Chempakam, and T. Zachariah, 2008, CAB International, Wallingford, UK, 211.

  10. K. Platel and K. Srinivasan, Nutr. Res., 2001, 27, 1309.

    Article  Google Scholar 

  11. R. K. Johri, Pharmacogn. Rev., 2011, 5, 63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M. Jalali-Heravi, B. Zekavat, and H. Sereshti, J. Chromatogr. A, 2007, 7743, 215.

    Article  Google Scholar 

  13. S. Azeez, “Chemistry of Spices”, ed. V. A. Parthasarathy, B. Chempakam, and T. Zachariah, 2008, CAB International, Wallingford, UK, 227.

  14. R. Li and Z. T. Jiang, Flavour Fragr. J., 2004, 79, 311.

    Article  Google Scholar 

  15. T. Takayanagi, T. Ishikawa, and J. Kitajima, Phytochemistry, 2003, 63, 479.

    Article  CAS  PubMed  Google Scholar 

  16. J. Sedláková, B. Kocourková, L. Lojková, and V. Kubán, Hort. Sci. (Prague), 2003, 30, 73.

    Article  Google Scholar 

  17. C. C. C. R. de Carvalho and M. M. R. da Fonseca, Food Chem., 2006, 95, 413.

    Article  Google Scholar 

  18. R. Fang, C. H. Jiang, X. Y. Wang, H. M. Zhang, Z. L. Liu, L. Zhou, S. S. Du, and Z. W. Deng, Molecules, 2010, 75, 9391.

    Article  Google Scholar 

  19. M. H. Meshkatalsadat, S. Salahvarzi, R. Aminiradpoor, and A. Abdollahi, Dig. J. Nanomater. Bios., 2012, 7, 637.

    Google Scholar 

  20. M. Krizman, D. Baricevic, and M. Prosek, J. Pharm. Biomed. Anal., 2007, 43, 481.

    Article  CAS  PubMed  Google Scholar 

  21. R. B. Cody, J. A. Laramee, and H. D. Durst, Anal. Chem., 2005, 77, 2297.

    Article  CAS  PubMed  Google Scholar 

  22. P. Chandra, V. Bajpai, M. Srivastva, K. B. R. Kumarc, and B. Kumar, Anal. Methods, 2014, 6, 4234.

    Article  CAS  Google Scholar 

  23. J. Prchalová, F. Kovaïïk, R. Sevcîk, H. Cfzková, and A. Rajchl, J. Mass Spectrom., 2014, 49, 811.

    Article  PubMed  Google Scholar 

  24. A. D. Lesiak, R. B. Cody, J. A. Dane, and R. A. Musah, Anal. Chem., 2015, 87, 8748.

    Article  CAS  PubMed  Google Scholar 

  25. H. J. Kim, W. S. Baek, and Y. P. Jang, Food Chem., 2011, 729, 1305.

    Article  Google Scholar 

  26. V. Bajpai, D. Sharma, B. Kumar, and K. P. Madhusudanan, Biomed. Chromatogr., 2010, 24, 1283.

    Article  CAS  PubMed  Google Scholar 

  27. V. Singh, A. K. Gupta, S. P. Singh, and A. Kumar, Scientific World J., 2012, Article ID549265.

    Google Scholar 

  28. H. Novotná, O. Kmiecik, M. Galazka, V. Krtková, A. Hurajová, V. Schulzová, E. Hallmann, E. Rembialkowska, and J. Hajslová, Food Addit. Contam., Part A, 2012, 29, 1335.

    Article  Google Scholar 

  29. S. M. Lee, H.-J. Kim, and Y. P. Jang, Phytochem. Anal., 2012, 23, 508.

    Article  CAS  PubMed  Google Scholar 

  30. S. Kumar, V. Bajpai, A. Singh, S. Bindu, M. Srivastava, K. B. Rameshkumard, and B. Kumar, Anal. Methods, 2015, 7, 6021.

    Article  CAS  Google Scholar 

  31. G. Gassner, “Mikroskopische Untersuchung Pflanzlicher Nahrungs und Genußmittel”, 1951, Verlag von Gustav Fischer, Jena, Germany.

    Google Scholar 

  32. G. Pottier-Alapetite, “Flore de la Tunisie. Angiospermes, Dicotyledones Dialypetales”, 1979, Imprimerie Officielle de la Republique Tunisienne, Tunis, Tunisia.

    Google Scholar 

  33. M. E. Kislev, A. Hartmann, and E. Galili, Journal of Archaeological Science, 2004, 37, 1301.

    Article  Google Scholar 

  34. M. Khan and S. Musharaf, Medicinal Plant Research, 2014, Vol. 4, No. 6, 46 (http://mpr.biopublisher.ca).

    Google Scholar 

  35. PSmicrographs. Cumin seed cross-section, http://www.psmicrographs.co.uk/cumin-seed-cross-section-cuminum-cyminum-royalty-free/science-image/15278 (16.02.2016).

  36. PSmicrographs. Cumin seed cross-section, http://www.psmicrographs.co.uk/cumin-seed-cross-section—cuminum-cyminum-/science-image/15281 (16.02.2016).

  37. W. Demuth, M. Karlovits, and K. Varmuza, Anal. Chim. Acta, 2004, 576, 75.

    Article  Google Scholar 

  38. J. H. Gross, Anal. Bioanal. Chem., 2014, 406, 63.

    Article  CAS  PubMed  Google Scholar 

  39. W. Yang, D. M. Fang, H. P. He, X. J. Hao, Z. J. Wu, and G. L. Zhang, Rapid Commun. Mass Spectrom., 2013, 27, 1203.

    Article  CAS  PubMed  Google Scholar 

  40. S. Azeez and V. A. Parthasarathy, “Chemistry of Spices”, ed. V. A. Parthasarathy, B. Chempakam, and T. Zachariah, 2008, CAB International, Wallingford, UK, 376.

  41. M. H. Spraul, S. Nitz, F. Drawert, H. Duddeck, and M. Hiegemannt, Phytochemistry, 1992, 37, 3109.

    Article  Google Scholar 

  42. G. Appendino, J. Jakupovic, and E. Bossio, Phytochemistry, 1998, 49, 1719.

    Article  CAS  PubMed  Google Scholar 

  43. E. L. Ghisalberti, Phytochemistry, 1994, 37, 597.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. István Bácsi (Department of Hydrobiology, University of Debrecen) for his help in taking microscopical photos using Olympus Provis BX50 microscope equipped with an Olympus DP80 digital camera, and Éva Fülöpné Barabás for the transverse sections. This work was financially supported by Grant K-101850 given by OTKA (National Fund for Scientific Research Development, Hungary), and Grant TÁMOP- 4.2.2.A-11/1/KONV-2012-0036 supported by the European Union and co-funded by the European Social Fund. This paper was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sándor Kéki.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antal, B., Kuki, Á., Nagy, L. et al. Rapid Discrimination of Closely Related Seed Herbs (Cumin, Caraway, and Fennel) by Direct Analysis in Real Time Mass Spectrometry (DART-MS). ANAL. SCI. 32, 1111–1116 (2016). https://doi.org/10.2116/analsci.32.1111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.1111

Keywords

Navigation