Skip to main content
Log in

Development of a Mesoscale Pulsed Discharge Helium Ionization Detector for Portable Gas Chromatography

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Miniaturization of gas chromatography (GC) instrumentation enables field detection of volatile organic compounds (VOCs) for chembio-applications such as clandestine human transport and disease diagnostics. We fabricated a mesoscale pulsed discharge helium ionization detector (micro-PDHID) for integrating with our previously described mini-GC hardware. Stainless steel electrodes fabricated by photochemical etching and electroforming facilitated rapid prototyping and enabled nesting of inter-electrode insulators for self-alignment of the detector core during assembly. The prototype was ~10 cm3 relative to >400 cm3 of a commercial PDHID, but with a comparable time to sweep a VOC peak from the detector cell (170 ms and 127 ms, respectively). Electron trajectory modeling, gas flow rate, voltage bias, and GC outlet location were optimized for improving sensitivity. Despite 40-fold miniaturization, the micro-PDHID detected 18 ng of the human emanation, 3-methyl-2-hexenoic acid with <3-fold decrease in sensitivity relative to the commercial detector. The micro-PDHID was rugged and operated for 9 months without failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Amann and D. Price, “Volatile Biomarkers”, 2013, Elsevier, New York.

    Google Scholar 

  2. S. Ohira and K. Toda, Anal. Chim. Acta, 2008, 619, 143.

    Article  CAS  PubMed  Google Scholar 

  3. R. P. Manginell, J. M. Bauer, M. W. Moorman, L. J. Sanchez, J. M. Anderson, J. J. Whiting, D. A. Porter, D. Copic, and K. E. Achyuthan, Sensors, 2011, 11, 6517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. R. P. Manginell, D. R. Adkins, M. W. Moorman, R. Hadizadeh, D. A. Porter, D. Copic, V. Hietala, J. Bryan, D. R. Wheeler, K. B. Pfeifer, and A. Rumpf, J. Microelectromech. Syst., 2008, 17, 1396.

    Article  CAS  Google Scholar 

  5. P. R. Lewis, R. P. Manginell, D. R. Adkins, R. J. Kottenstette, D. R. Wheeler, S. S. Sokolowsk, D. E. Trudell, J. E. Byrnes, M. Okandan, J. M. Bauer, R. G. Manley, and G. C. Frye-Mason, IEEE Sens. J., 2006, 6, 784.

    Article  Google Scholar 

  6. R. P. Manginell, D. A. Rosato, D. A. Benson, and G. C. Frye-Mason, in Proceedings of Modeling and Simulation of Microsystems (MSM ’99), San Juan, PR, USA, 1999, 663.

  7. J. J. Whiting, C. S. Fix, J. M. Anderson, A. W. Staton, R. P. Manginell, D. R. Wheeler, E. B. Myers, M. L. Roukes, and R. J. Simonson, in Proceedings of 15th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers, 2009), Denver, CO, USA, 2009, 1666.

  8. J. M. Anderson, M. W. Moorman, J. R. Brown, J. M. Hochrein, S. M. Thornberg, K. E. Achyuthan, M. A. Gallis, J. R. Torczynski, T. Khraishi, and R. P. Manginell, J. Micromech. Microeng., 2014, 24, 055013.

    Article  CAS  Google Scholar 

  9. R. P. Manginell, M. W. Moorman, J. A. Rejent, P. T. Vianco, M. J. Grazier, B. D. Wroblewski, C. D. Mowry, and K. E. Achyuthan, Rev. Sci. Instrum., 2012, 83, 031301.

    Article  PubMed  Google Scholar 

  10. R. P. Manginell, A. S. Pimentel, C. D. Mowry, M. A. Mangan, M. W. Moorman, A. Allen, E. S. Schares, and K. E. Achyuthan, J. Breath Res., 2013, 7, 037107.

    Article  CAS  PubMed  Google Scholar 

  11. D. S. Forsyth, J. Chromatogr. A, 2004, 1050, 63.

    Article  CAS  PubMed  Google Scholar 

  12. H. Cai, W. E. Wentworth, and S. D. Stearns, Anal. Chem., 1996, 68, 1233.

    Article  CAS  PubMed  Google Scholar 

  13. W. E. Wentworth, K. Sun, D. Zhang, J. Madabushi, and S. D. Stearns, J. Chromatogr. A, 2000, 872, 119.

    Article  CAS  PubMed  Google Scholar 

  14. B. L. Winniford, K. Sun, J. F. Griffith, and J. C. Luong, J. Sep. Sci., 2006, 29, 2664.

    Article  CAS  PubMed  Google Scholar 

  15. S. Narayanan, G. Rice, and M. Agah, Microchim. Acta, 2014, 181, 493.

    Article  CAS  Google Scholar 

  16. S. Narayanan, G. Rice, and M. Agah, Sens. Actuators, B, 2015, 206, 190.

    Article  CAS  Google Scholar 

  17. P. C. Novelli, A. M. Crotwell, and B. D. Hall, Environ. Sci. Technol., 2009, 43, 2431.

    Article  CAS  PubMed  Google Scholar 

  18. D. A. Dahl, Int. J. Mass Spectrom., 2000, 200, 3.

    Article  CAS  Google Scholar 

  19. D. A. Dahl, T. R. McJunkin, and J. R. Scott, Int. J. Mass Spectrom., 2007, 266, 156.

    Article  CAS  Google Scholar 

  20. H. Lai, T. R. McJunkin, C. J. Miller, J. R. Scott, and J. R. Almirall, Int. J. Mass Spectrom., 2008, 276, 1.

    Article  CAS  Google Scholar 

  21. T. Akutsu, K. Sekiguchi, T. Ohmori, and K. Sakurada, Chem. Senses, 2006, 31, 557.

    Article  CAS  PubMed  Google Scholar 

  22. S. G. Gordon, K. Smith, J. L. Rabinowitz, and P. R. Vagelos, J. Lipid Res., 1973, 14, 495.

    Article  CAS  PubMed  Google Scholar 

  23. H. Cai and S. D. Stearns, J. Chromatogr. A, 2013, 1284, 163.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald P. Manginell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manginell, R.P., Mowry, C.D., Pimentel, A.S. et al. Development of a Mesoscale Pulsed Discharge Helium Ionization Detector for Portable Gas Chromatography. ANAL. SCI. 31, 1183–1188 (2015). https://doi.org/10.2116/analsci.31.1183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.31.1183

Keywords

Navigation