Skip to main content
Log in

Rapid Analysis of Gasoline-Contaminated Soil Using Multiphoton Ionization/Time-of-Flight Mass Spectrometry

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Multiphoton ionization/time-of-flight mass spectrometry (MPI/TOFMS) was modified for the rapid analysis of gasoline-contaminated soil. This technique uses a nanosecond laser emitting at 266 nm, and has the potential to produce the mass spectrum for gasoline 30 min after sampling. The rapidity and robustness of the method can be applied to the screening of gasoline-contaminated soils while minimizing the risk of contamination when gas chromatograph (GC) is used. GC/MPI/TOFMS was used for a simultaneous determination of aromatic compounds of gasoline in a soil sample, and this was achieved without interference. A peak for toluene can be observed from 0.02 ng of gasoline, and ten peaks of aromatic hydrocarbons, which are sensitive to measurement by a laser, can be observed from 0.65 ng of gasoline. The MPI/TOFMS had good sensitivity and selectivity, and was therefore useful for the rapid analysis of gasoline-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Brown, Anal. Chem., 1951, 23, 430.

    Article  CAS  Google Scholar 

  2. H. S. Knight, Anal. Chem., 1958, 30, 9.

    Article  CAS  Google Scholar 

  3. P. Doble, M. Sandercock, E. Du Pasquier, P. Petocz, C. Roux, and M. Dawson, Forensic Sci. Int., 2003, 132, 26.

    Article  CAS  PubMed  Google Scholar 

  4. Guidelines for the Countermeasures against Oil Contamination—Landowner’s Response Policy Concerning Oil Slick and Odor Problems from Mineral Oil Contaminated Soil”, 2006, Central Environment Council under the Ministry of the Environment of Japan.

  5. R. Zimmermann, Ch. Lermer, K. W. Schramm, A. Kettrup, and U. Boesl, Eur. Mass Spectrom., 1995, 1, 341.

    Article  CAS  Google Scholar 

  6. Y. Watanabe-Ezoe, X. Li, T. Imasaka, T. Uchimura, and T. Imasaka, Anal. Chem., 2010, 82, 6519.

    Article  CAS  PubMed  Google Scholar 

  7. T. Matsui, K. Fukazawa, M. Fujimoto, and T. Imasaka, Anal. Sci., 2012, 28, 445.

    Article  CAS  PubMed  Google Scholar 

  8. M. Ichikawa, N. Nonaka, I. Takada, and S. Ishimori, Anal. Sci., 1993, 9, 261.

    Article  CAS  Google Scholar 

  9. J. Wang, B. Yang, Y. Li, Z. Tian, T. Zhang, F. Qi, and K. Nakajima, Int. J. Mass Spectrom., 2007, 263, 30.

    Article  CAS  Google Scholar 

  10. T. Adam and R. Zimmermann, Anal. Bioanal. Chem., 2007, 389, 1941.

    Article  CAS  PubMed  Google Scholar 

  11. M. J. Northway, J. T. Jayne, D. W. Toohey, M. R. Canagaratna, A. Trimborn, K.-I. Akiyama, A. Shimono, J. L. Jimenez, P. F. DeCarlo, K. R. Wilson, and D. R. Worsnop, Aerosol Sci. Technol., 2007, 41, 828.

    Article  CAS  Google Scholar 

  12. Y. Yamamoto, Y. Kambe, H. Yamada, and K. Tonokura, Anal. Sci., 2012, 28, 385.

    Article  CAS  PubMed  Google Scholar 

  13. F. Mühlberger, R. Zimmermann, and A. Kettrup, Anal. Chem., 2001, 73, 3590.

    Article  PubMed  Google Scholar 

  14. R. Zimmermann, U. Boesl, H.-J. Heger, E. R. Rohwer, E. K. Ortner, E. W. Schlag, and A. Kettrup, J. High Resol. Chromatogr., 1997, 20, 461.

    Article  CAS  Google Scholar 

  15. K. Misawa, K. Tanaka, H. Yamada, Y. Goto, J. Matsumoto, Y. Yamato, S. Ishiuchi, M. Fujii, K. Tanaka, K. Endo, and S. Hayashi, Int. J. Engine Res., 2009, 10, 409.

    Article  CAS  Google Scholar 

  16. M. Loepfe, H. Burtscher, and H. C. Siegmann, Water, Air, Soil Pollut., 1993, 68, 177.

    Article  CAS  Google Scholar 

  17. N. Nakamura, T. Uchimura, Y. Watanabe-Ezoe, and T. Imasaka, Anal. Sci., 2011, 27, 617.

    Article  CAS  PubMed  Google Scholar 

  18. R. Tembreull, C. H. Sin, P. Li, H. M. Pang, and D. M. Lubman, Anal. Chem., 1985, 57, 1186.

    Article  CAS  Google Scholar 

  19. A. Li, T. Uchimura, H. Tsukatani, and T. Imasaka, Anal. Sci., 2010, 26, 841.

    Article  CAS  PubMed  Google Scholar 

  20. A. Li, T. Uchimura, Y. Watanabe-Ezoe, and T. Imasaka, Anal. Chem., 2011, 83, 60.

    Article  CAS  PubMed  Google Scholar 

  21. JIS K 2536-2, “Liquid Petroleum Products—Testing Method of Components, Part 2: Determination of Total Components by Gas Chromatography”, 2003, Japanese Standards Association.

  22. A. Li, T. Imasaka, T. Uchimura, and T. Imasaka, Anal. Chim. Acta, 2011, 701, 52.

    Article  CAS  PubMed  Google Scholar 

  23. T. Uchimura, N. Nakamura, and T. Imasaka, Rev. Sci. Instrum., 2012, 83, 014101.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Uchimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchimura, T., Hironaka, Y. & Mori, M. Rapid Analysis of Gasoline-Contaminated Soil Using Multiphoton Ionization/Time-of-Flight Mass Spectrometry. ANAL. SCI. 29, 85–88 (2013). https://doi.org/10.2116/analsci.29.85

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.29.85

Navigation