Skip to main content
Log in

Electrochemical Determination of Cadmium and Lead on Pristine Single-walled Carbon Nanotube Electrodes

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A flexible, transparent, single-walled carbon nanotube (SWCNT) film electrode was prepared by vacuum filtering methods, followed by photolithographic patterning of a photoresist polymer on the SWCNT surface. The morphology of the SWCNT film electrode surface was characterized using a field-emission scanning electron microscope coupled to an energy-dispersive X-ray spectrophotometer. The electrodes were successfully used as a mercury-free electrochemical sensor for individual and simultaneous detection of cadmium (Cd2+) and lead (Pb2+) in 0.02 M HCl by square-wave stripping voltammetry. Some important operational parameters, including deposition time, deposition potential, square-wave amplitude, and square wave-frequency were optimized for the detection of Cd2+ and Pb2+. The newly developed sensor showed good linear behavior in the examined concentration. For individual Cd2+ and Pb2+ ion detection, the linear range was found from 0.033 to 0.228 ppm with detection limits of 0.7 ppb (R2 = 0.985) for Cd2+ and 0.8 ppb (R2 = 0.999) for Pb2+. For simultaneous detection, the linear range was found from 0.033 to 0.280 ppm with a limit of detection of 2.2 ppb (R2 = 0.976) and 0.6 ppb (R2 = 0.996) for Cd2+ and Pb2+, respectively. SWCNT film electrodes offered favorable reproducibility of ±5.4% and 4.3% for Cd2+ and Pb2+, respectively. The experiments demonstrated the applicability of carbon nanotubes, specifically in the preparation of SWCNT films. The results suggest that the proposed flexible SWCNT film electrodes can be applied as simple, efficient, cost-effective, and/or disposable electrodes for simultaneous detection of heavy metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. L. S. Wong, E. Chow, and J. Justin Gooding, Electrochem. Commun., 2007, 9, 845.

    Article  CAS  Google Scholar 

  2. M. T. Castaneda, B. Perez, M. Pumera, M. del Valle, A. Merkoçi, and S. Alegret, Analyst, 2005, 130, 971.

    Article  CAS  PubMed  Google Scholar 

  3. M. Liu, G. Zhao, Y. Tang, Z. Yu, Y. Lei, M. Li, Y. Zhang, and D. Li, Environ. Sci. Technol., 2010, 44, 4241.

    Article  CAS  PubMed  Google Scholar 

  4. J.-B. Fini, S. Pallud-Mothré, S. B. Le Mével, K. Palmier, C. M. Havens, M. Le Brun, V. Mataix, G. F. Lemkine, B. A. Demeneix, N. Turque, and P. E. Johnson, Environ. Sci. Technol., 2009, 43, 8895.

    Article  CAS  PubMed  Google Scholar 

  5. S. Wang, E. S. Forzani, and N. Tao, Anal. Chem., 2007, 79, 4427.

    Article  CAS  PubMed  Google Scholar 

  6. W. A. Grant and P. C. Ellis, J. Anal. At. Spectrom., 1988, 3, 815.

    Article  CAS  Google Scholar 

  7. V. L. Dressler, D. Pozebon, and A. J. Curtius, Spectrochim. Acta, Part B, 1998, 53, 1527.

    Article  Google Scholar 

  8. B. C. Janegitz, L. H. Marcolino-Junior, S. P. Campana-Filho, R. C. Faria, and O. Fatibello-Filho, Sens. Actuators, B, 2009, 142, 260.

    Article  CAS  Google Scholar 

  9. C. R. T. Tarley, V. S. Santos, B. E. L. Baêta, A. C. Pereira, and L. T. Kubota, J. Hazard. Mater., 2009, 169, 256.

    Article  CAS  PubMed  Google Scholar 

  10. Y. He, Y. Zheng, M. Ramnaraine, and D. C. Locke, Anal. Chim. Acta, 2004, 511, 55.

    Article  CAS  Google Scholar 

  11. G. Aragay, A. Puig-Font, M. Cadevall, and A. Merkoçi, J. Phys. Chem. C, 2010, 114, 9049.

    Article  CAS  Google Scholar 

  12. G. Aragay, J. Pons, and A. Merkoçi, J. Mater. Chem., 2011, 21, 4326.

    Article  CAS  Google Scholar 

  13. R. Güell, G. Aragay, C. Fontàs, E. Anticó, and A. Merkoçi, Anal. Chim. Acta, 2008, 627, 219.

    Article  PubMed  Google Scholar 

  14. A. Wanekaya and O. A. Sadik, J. Electroanal. Chem., 2002, 537, 135.

    Article  CAS  Google Scholar 

  15. J. Wang, S. B. Hocevar, R. P. Deo, and B. Ogorevc, Electrochem. Commun., 2001, 3, 352.

    Article  CAS  Google Scholar 

  16. I. Švancara, C. Prior, S. B. Hočevar, and J. Wang, Electroanalysis, 2010, 22, 1405.

    Article  Google Scholar 

  17. Z. Zou, A. Jang, E. MacKnight, P.-M. Wu, J. Do, P. L. Bishop, and C. H. Ahn, Sens. Actuators, B, 2008, 134, 18.

    Article  CAS  Google Scholar 

  18. D. Pan, Y. Wang, Z. Chen, T. Lou, and W. Qin, Anal. Chem., 2009, 81, 5088.

    Article  CAS  PubMed  Google Scholar 

  19. S. Iijima, Phys. B, 2002, 323, 1.

    Article  CAS  Google Scholar 

  20. P. M. Ajayan, Chem. Rev., 1999, 99, 1787.

    Article  CAS  PubMed  Google Scholar 

  21. J. J. Gooding, R. Wibowo, J. Liu, W. Yang, D. Losic, S. Orbons, F. J. Mearns, J. G. Shapter, and D. B. Hibbert, J. Am. Chem. Soc., 2003, 125, 9006.

    Article  CAS  PubMed  Google Scholar 

  22. J. Wang, Electroanalysis, 2005, 17, 7.

    Article  CAS  Google Scholar 

  23. J. Morton, N. Havens, A. Mugweru, and A. K. Wanekaya, Electroanalysis, 2009, 21, 1597.

    Article  CAS  Google Scholar 

  24. K. N. Han, C. A. Li, M.-P. N. Bui, X.-H. Pham, and G. H. Seong, Chem. Commun., 2011, 47, 938.

    Article  CAS  Google Scholar 

  25. S. K. Vashist, D. Zheng, K. Al-Rubeaan, J. H. T. Luong, and F.-S. Sheu, Biotechnol. Adv., 2011, 29, 169.

    Article  CAS  PubMed  Google Scholar 

  26. U. Injang, P. Noyrod, W. Siangproh, W. Dungchai, S. Motomizu, and O. Chailapakul, Anal. Chim. Acta, 2010, 668, 54.

    Article  CAS  PubMed  Google Scholar 

  27. Z. Nie, C. A. Nijhuis, J. Gong, X. Chen, A. Kumachev, A. W. Martinez, M. Narovlyansky, and G. M. Whitesides, Lab Chip, 2010, 10, 477.

    Article  CAS  PubMed  Google Scholar 

  28. Z. Zhiwei, J. Am, E. T. MacKnight, W. Pei-Ming, J. Do, S. J. Sub, P. L. Bishop, and C. H. Ahn, IEEE Sensors J., 2009, 9, 586.

    Article  Google Scholar 

  29. X.-S. Zhu, C. Gao, J.-W. Choi, P. L. Bishop, and C. H. Ahn, Lab Chip, 2005, 5, 212.

    Article  CAS  PubMed  Google Scholar 

  30. A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivistö, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, and E. I. Kauppinen, ACS Nano, 2011, 5, 3214.

    Article  CAS  PubMed  Google Scholar 

  31. M.-P. Ngoc Bui, C. A. Li, K. N. Han, X.-H. Pham, and G. H. Seong, Analyst, 2012, 137, 1888.

    Article  CAS  Google Scholar 

  32. L. Zhu, C. Tian, R. Yang, and J. Zhai, Electroanalysis, 2008, 20, 527.

    Article  CAS  Google Scholar 

  33. T. Kazak and M. Revenko, J. Anal. Chem., 2009, 64, 181.

    Article  CAS  Google Scholar 

  34. M.-P. N. Bui, S. Lee, K. N. Han, X.-H. Pham, C. A. Li, J. Choo, and G. H. Seong, Chem. Commun., 2009, 5549.

  35. K. N. Han, C. A. Li, M.-P. N. Bui, and G. H. Seong, Langmuir, 2009, 26, 598.

    Article  Google Scholar 

  36. B.-S. Kong, D.-H. Jung, S.-K. Oh, C.-S. Han, and H.-T. Jung, J. Phys. Chem. C, 2007, 111, 8377.

    Article  CAS  Google Scholar 

  37. Š. Komorsky-Lovrić and M. Lovrić, Fresenius’ J. Anal. Chem., 1989, 335, 289.

    Article  Google Scholar 

  38. M. Wojciechowski, W. Go, and J. Osteryoung, Anal. Chem., 1985, 57, 155.

    Article  Google Scholar 

  39. B. Yang, N. Lu, C. Huang, D. Qi, G. Shi, H. Xu, X. Chen, B. Dong, W. Song, B. Zhao, and L. Chi, Langmuir, 2008, 25, 55.

    Article  Google Scholar 

  40. M. Wojciechowski and J. Balcerzak, Anal. Chem., 1990, 62, 1325.

    Article  CAS  Google Scholar 

  41. M. R. Rahman, T. Okajima, and T. Ohsaka, Anal. Chem., 2010, 82, 9169.

    Article  CAS  PubMed  Google Scholar 

  42. K. N. Han, C. A. Li, B. Han, M.-P. N. Bui, X.-H. Pham, J. Choo, M. Bachman, G. P. Li, and G. H. Seong, Langmuir, 2010, 26, 9136.

    Article  CAS  PubMed  Google Scholar 

  43. J. Schiewe, K. B. Oldham, J. C. Myland, A. M. Bond, V. A. Vicente-Beckett, and S. Fletcher, Anal. Chem., 1997, 69, 2673.

    Article  CAS  Google Scholar 

  44. R. Ouyang, Z. Zhu, C. E. Tatum, J. Q. Chambers, and Z.-L. Xue, J. Electroanal. Chem., 2011, 656, 78.

    Article  CAS  Google Scholar 

  45. G. H. Hwang, W. K. Han, J. S. Park, and S. G. Kang, Talanta, 2008, 76, 301.

    Article  CAS  PubMed  Google Scholar 

  46. L. Moreno-Baron, A. Merkoçi, and S. Alegret, Electrochim. Acta, 2003, 48, 2599.

    Article  CAS  Google Scholar 

  47. J. H. Santos, M. R. Smyth, and R. Blanc, Anal. Commun., 1998, 35, 345.

    Article  CAS  Google Scholar 

  48. A. Zeng, E. Liu, S. N. Tan, S. Zhang, and J. Gao, Electroanalysis, 2002, 14, 1294.

    Article  CAS  Google Scholar 

  49. K. Wu, S. Hu, J. Fei, and W. Bai, Anal. Chim. Acta, 2003, 489, 215.

    Article  CAS  Google Scholar 

  50. M. A. Morsi, A. M. A. Hilmy, H. A. Etman, A. M. A. Ouf, and M. G. Elghalban, J. Am. Sci., 2011, 7, 1173.

    Google Scholar 

  51. E. Chow, D. B. Hibbert, and J. J. Gooding, Anal. Chim. Acta, 2005, 543, 167.

    Article  CAS  Google Scholar 

  52. J. Yin, P. Hu, J. Luo, L. Wang, M. F. Cohen, and C.-J. Zhong, ACS Nano, 2011, 5, 6516.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gi Hun Seong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bui, MP.N., Li, C.A., Han, K.N. et al. Electrochemical Determination of Cadmium and Lead on Pristine Single-walled Carbon Nanotube Electrodes. ANAL. SCI. 28, 699–704 (2012). https://doi.org/10.2116/analsci.28.699

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.28.699

Navigation