Skip to main content
Log in

Pulsed NMR Study of the Curing Process of Epoxy Resin

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

To analyze a curing process of epoxy resin in terms of molecular motion, we adapted a pulsed NMR method. Three kinds of 1H spin-spin relaxation times (T2L (long), T2S (short) and T2M (intermediate)) were estimated from observed solid echo train signals as the curing process proceeded. A short T2S value below 20 ms suggests the existence of a motion-restricted chain, that is, cured elements of resin, and its fraction, PS, sigmoidally increased with the curing time. On the other hand, the fraction of T2L, PL, decreased with the reaction time reciprocally against PS, suggesting the disappearance of highly mobile molecules raised from pre-cured resin. The spin-lattice relaxation time, T1, was also measured to check another aspect of molecular motion in the process. T1 of the mixed epoxy resin and curing agent gradually increased just after mixing both of them. This corresponds to an increment of a less-mobile fraction, of which the correction time is more than 10–6 s, and also means that the occurrence of a network structure whose mobility is strongly restricted by chemically bonded bridges between the epoxy resin and curing agent. The time courses of these parameters coincided with those of IR peaks pertinent to the curing reaction. Therefore, pulsed NMR is a useful tool to monitor the hardening process of epoxy resin in real time non-distractively in terms of the molecular motion of protons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. G. Fry and A. C. Lind, Macromolecules, 1988, 21, 1292.

    Article  CAS  Google Scholar 

  2. A. Hale and C. W. Macosako, Macromolecules, 1991, 24, 2610.

    Article  CAS  Google Scholar 

  3. A. Shefer and M. Gottlib, Macromolecules, 1992, 25, 4036.

    Article  CAS  Google Scholar 

  4. E. Butta, A. Livi, G. Levita, and P. A. Rolla, J. Polym. Sci., Part B: Polym. Phys., 1995, 331, 2253.

    Article  Google Scholar 

  5. I. Mondragon, I. Quintard, and C. B. Bucknalol, Plast., Rubber Compos. Process Appl., 1995, 23, 331.

    CAS  Google Scholar 

  6. G. M. Maistrus and C. B. Buknal, Polym. Eng. Sci., 1994, 34(20), 1519.

    Google Scholar 

  7. K. Yanaguchi, pre-print of Japan Society of Anal. Chem., 1998, 10, 47.

    Google Scholar 

  8. B. Blümich, S. Anferova, K. Kremer, S. Shama, V. Hermann, and A. Segre, Spectroscopy, 2003, 18(2), 18.

    Google Scholar 

  9. B. Blümich, V. Anferov, S. Anferova, M. Klein, R. Fechte, M. Adamas, and F. Casanova, Magn. Reson. Eng., 2002, 15(4), 255.

    Article  Google Scholar 

  10. K. Fujimoto, T. Nishi, and R. Kado, Polym. J., 1972, 3, 448.

    Article  CAS  Google Scholar 

  11. R. Folland and A. Charlesby, J. Polym. Sci., Part C: Polym. Lett., 1978, 16, 104.

    Google Scholar 

  12. R. Folland, J. H. Stern, and A. Charlesby, J. Polym. Sci., Part A: Polym. Chem., 1978, 16, 339.

    CAS  Google Scholar 

  13. I. Kamel and A. Charlesby, J. Polym. Sci., Part B: Polym. Phys., 1981, 19, 803.

    CAS  Google Scholar 

  14. T. Nishi and T. Rikiishi, Polym. Preprints Jpn., 1978, 27, 1707.

    Google Scholar 

  15. T. Kurotu, Polym. J., 1986, 18, 859.

    Article  CAS  Google Scholar 

  16. T. Kurotu, Polym. J., 1987, 19, 285.

    Article  CAS  Google Scholar 

  17. H. Kimoto, A. Fukuda, A. Asano, and T. Kurotsu, Anal. Sci., 2005, 21, 315.

    Article  CAS  PubMed  Google Scholar 

  18. H. Kimoto, T. Uemura, and T. Kurotsu, Mem. Nat. Def. Acd., 2003, 43, 1.

    Google Scholar 

  19. H. Serizawa, M. Ito, T. Kanamoto, K. Tanaka, and A. Nomura, Polym. J., 1982, 14, 149.

    Article  CAS  Google Scholar 

  20. S. Kaufman, J. Polym. Sci., Part A: Polym. Chem., 1982, 14, 149.

    Google Scholar 

  21. G. C. Munie and J. Jonas, J. Polym. Sci., Part A: Polym. Chem., 1980, 18, 1061.

    CAS  Google Scholar 

  22. R. P. Cocker, D. L. Chadwick, D. J. Dare, and R. E. Challis, Int. J. Adhes. Adhes., 1998, 18, 319.

    Article  CAS  Google Scholar 

  23. A. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev., 1948, 78, 679.

    Article  Google Scholar 

  24. The temperature dependence of the curing agent was almost the same as that of the pre-cured resin. The softening point ranges from –10 to 35°C. Over 35°C, only a component of PL was observed.

  25. This is one of the important properties of epoxy resin for the practical purposes, being tolerate to a high temperature.

  26. S. K. Soh and D. C. Sundberg, J. Polym. Sci., Part A: Polym. Chem., 1982, 20, 1299.

    CAS  Google Scholar 

  27. S. K. Soh and D. C. Sundberg, J. Polym. Sci., Part A: Polym. Chem., 1982, 20, 1315.

    CAS  Google Scholar 

  28. S. K. Soh and D. C. Sundberg, J. Polym. Sci., Part A: Polym. Chem., 1982, 20, 1331.

    CAS  Google Scholar 

  29. S. K. Soh and D. C. Sundberg, J. Polym. Sci., Part A: Polym. Chem., 1982, 20, 1345.

    CAS  Google Scholar 

  30. I. T. Smith, J. Appl. Chem., 1960, 10, 95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuzo Kurotsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimoto, H., Tanaka, C., Yaginuma, M. et al. Pulsed NMR Study of the Curing Process of Epoxy Resin. ANAL. SCI. 24, 915–920 (2008). https://doi.org/10.2116/analsci.24.915

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.24.915

Navigation