Skip to main content
Log in

Simultaneous Species Analysis of Arsenic, Selenium, Bromine, and Iodine in Bottled Drinking Water and Fruit Juice by High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A method for the simultaneous determination of arsenobetaine, arsenite, arsenate, dimethylarsinic acid, monomethylarsonic acid, selenite, selenate, bromate, bromide, iodate, and iodide in bottled drinking water and fruit juice samples was established by using high-performance liquid chromatography–inductively coupled plasma mass spectrometry. The separation of eleven compounds was performed on an ion exchange chromatography column (Dionex IonPac AS14) with 20 mmol L−1 (NH4)2CO3 (pH 10) and 50 mmol L−1 (NH4)2CO3 (pH 10) as a mobile phase. The limits of quantification of the method were 0.17–1.2 μg L−1 for the test compounds in bottled drinking water and 0.34–2.4 μg L−1 in fruit juice. The average recoveries ranged from 85.8 to 102.2%, and the relative standard deviations (RSDs) obtained in fortification recovery studies were generally <4.2% for bottled drinking water samples. The average recoveries ranged from 88.1 to 118.0% (except for iodate) for fruit juice sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO, “Guidelines for Drinking Water Quality”, First Addendum to 3rd ed. (Vol. 1 recommendations), 2006, https://www.who.int/water_sanitation_health/dwq/gdwq0506.pdf.

  2. US EPA, “Minor Clarification of the National Primary Drinking Water Regulation for Arsenic”, 2003, https://www.federalregister.gov/documents/2003/03/25/03-7048/minor-clarification-of-national-primary-drinking-water-regulation-for-arsenic.

    Google Scholar 

  3. US FDA, “Hazard Assessment and Eevel of Concern-apple Juice”, 2008, http://www.fda.gov/Food/FoodborneIllnessContaminants/Metals/ucm277681.htm. Accessed 06 Feb 2016.

    Google Scholar 

  4. I. Komorowicz and D. Baralkiewicz, Taianta, 2011, 84, 247.

    Article  CAS  Google Scholar 

  5. Z. Wang, E. Nadeau, M. Sparling, and D. Forsyth, Food Anal. Methods., 2014, 8, 173.

    Article  Google Scholar 

  6. WHO, “Selenium in Drinking-water. Background Document for Preparation of WHO Guidelines for Drinking-water Quality”, 2011a, WHO/SDE/WSH/03.04/13/Rev/l?

    Google Scholar 

  7. B. D. Wake, A. R. Bowie, E. C. V. Butler, and P. R. Haddad, TrAC—Trends Anal. Chem., 2004, 23, 491.

    Article  CAS  Google Scholar 

  8. C. K. Jain and I. Ali, Water Res., 2000, 34, 4304.

    Article  CAS  Google Scholar 

  9. W. R. Haag and J. Hoigne, Environ. Sci. Technol., 1983, 17, 261.

    Article  CAS  Google Scholar 

  10. U. V. Gunten, Water Res., 2003, 37, 1469.

    Article  Google Scholar 

  11. H. S. Weinberg, C. A. Delcomyn, and V. Unnam, Environ. Sci. Technol., 2003, 37, 3104.

    Article  CAS  PubMed  Google Scholar 

  12. M. Asami, K. Kosaka, and S. Kunikane, J. Water Supply: Res. Technol., 2009, 58, 107.

    Article  CAS  Google Scholar 

  13. IARC, “Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Chemicals that Cause Tumours of the Kidney or Urinary Bladder in Rodents and Some Other Substances”, International Agency for Research on Cancer, Lyon, 1999, https://monographs.iarc.fr/wp-content/uploads/2018/06/mono73.pdf.

    Google Scholar 

  14. US EPA, “National Primary Drinking Water Regulations: Stage 2 Disinfectants and Disinfection Byproducts Rule”, 2006, https://www.regulations.gov/document?D=EPA-HQ-OW-2002-0043-0688.

    Google Scholar 

  15. WHO, “Bromate in Drinking Water. Background Document for Development of WHO Guidelines for Drinking-water Quality”, 2005, https://www.who.int/water_sanitation_health/dwq/chemicals/bromate260505.pdf.

    Google Scholar 

  16. A. A. Othman, S. A. Al-Ansi, and M. A. Al-Tufail, Anal. Lett., 2010, 43, 886.

    Article  CAS  Google Scholar 

  17. S. A. Snyder, B. J. Vanderford, and D. J. Rexing, Environ. Sci. Technol., 2005, 39, 4586.

    Article  CAS  PubMed  Google Scholar 

  18. H. Bürgi, T. Schaffner, and J. P. Seiler, Thyroid, 2001, 11, 449.

    Article  PubMed  Google Scholar 

  19. Y. Anan, G. Nakajima, and Y. Ogra, Anal. Sci., 2015, 31, 561.

    Article  CAS  PubMed  Google Scholar 

  20. C. Y. Tsai and S. J. Jiang, Anal. Sci., 2011, 27, 271.

    Article  CAS  PubMed  Google Scholar 

  21. K. Kosaka, M. Asami, K. Takei, and M. Akiba, Anal. Sci., 2011, 27, 1091.

    Article  CAS  PubMed  Google Scholar 

  22. T. Narukawa, T. Iwai, and K. Chiba, Anal. Sci., 2018, 34, 687.

    Article  CAS  PubMed  Google Scholar 

  23. J. A. Baig, T. G. Kazi, M. B. Arain, A. Q. Shah, G. A. Kandhro, H. I. Afridi, S. Khan, N. E Kolachi, and S. K. Wadhwa, Anal. Sci., 2011, 27, 439.

    Article  CAS  PubMed  Google Scholar 

  24. K. Hagiwara, T. Inui, Y. Koike, and T. Nakamura, Anal. Sci., 2013, 29, 1153.

    Article  CAS  PubMed  Google Scholar 

  25. I. H. Alsohaimi, Z. A. Alothman, M. R. Khan, M. A. Abdalla, R. Busquets, and A. K. Alomary, J. Sep. Sci., 2012, 35, 2538.

    Article  CAS  PubMed  Google Scholar 

  26. B. P. Jackson and P. M. Bertsch, Environ. Sci. Technol., 2001, 35, 4868.

    Article  CAS  PubMed  Google Scholar 

  27. W. Cui, H. Hou, J. Chen, X. Yu, Y. Guo, Z. Tao, T. Deng, Y. Chen, and N. Belzile, J. Anal. At. Spectrom., 2019, 34, 1374.

    Article  CAS  Google Scholar 

  28. S. Chen, Z. Du, L. Liu, and H. Jiang, Chin. J. Anal. Chem., 2014, 42, 349.

    CAS  Google Scholar 

  29. F. Zhao, Y. Liu, X. Zhang, R. Dong, W. Yu, Y. Liu, Z. Guo, X. Liang, and J. Zhu, J. Chromatogr. A, 2018, 1573, 48.

    Article  CAS  PubMed  Google Scholar 

  30. S. Chen, Q. Guo, and L. Liu, Eood Anal. Methods, 2017, 10, 740.

    Article  Google Scholar 

  31. B. Hattendorf and D. Gunther. J. Anal. At. Spectrom., 2004, 19, 600.

    Article  CAS  Google Scholar 

  32. P. Allain, L. Jaunault, Y. Mauras, J. M. Mermet, and T. Delaporte, Anal. Chem., 1991, 63, 1497.

    Article  CAS  Google Scholar 

  33. E. H. Larsen and S. Stürup, J. Anal. At. Spectrom., 1994, 9, 1099.

    Article  CAS  Google Scholar 

  34. Z. Hu, S. Hu, S. Gao, Y. Liu, and S. Lin, Spectrochim. Acta, Part B, 2004, 59, 1463.

    Article  Google Scholar 

  35. L. Schmidt, J. A. Landero, D. L. R. Novo, F. A. Duarte, M. F. Mesko, J. A. Caruso, and E. M. M. Flores, Food Chem., 2018, 255, 340.

    Article  CAS  PubMed  Google Scholar 

  36. Z. Wang, J. Xu, Y. Liu, Z. Li, Y. Xue, Y. Wang, and C. Xue, Anal. Lett., 2019, 52, 2266.

    Article  CAS  Google Scholar 

  37. E. Kápolna and P. Fodor, Microchem. J., 2006, 84, 56.

    Article  Google Scholar 

Download references

Acknowledgements

The work was financed by Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Liu, L. Simultaneous Species Analysis of Arsenic, Selenium, Bromine, and Iodine in Bottled Drinking Water and Fruit Juice by High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry. ANAL. SCI. 37, 1241–1246 (2021). https://doi.org/10.2116/analsci.20P399

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20P399

Keywords

Navigation