Skip to main content
Log in

Highly Sensitive Electrochemical Detection of Folic Acid by Using a Hollow Carbon Nanospheres@molybdenum Disulfide Modified Electrode

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

As a nutrient in body functions, folic acid (FA) plays a very important role for human health, and thus developing a highly sensitive method for its determination is of great significance. In the present work, carbon hollow nanospheres decorated with molybdenum disulfide nanosheets (CHN@MoS2) nanomaterials were produced through a simple method and adopted to modify a glassy carbon electrode for assembling a highly sensitive electrochemical sensor of FA. After characterizing the prepared nanomaterials using scanning-/transmission-electron microscopy and Raman spectra, as well as optimizing various testing conditions, including the pH value of the buffer solution, the accumulation time and amount of nanomaterials on electrode surface, and the electrochemical determination of FA was carried out using a CHN@MoS2 electrode. Owing to the coordinative advantages from CHN and MoS2, the results show that CHN@MoS2 exhibits excellent sensing responses for FA, and it has a wide linear range from 0.08 to 10.0 μM coupled with a low detection limit of 0.02 μM. Finally, the proposed method for FA detection was successfully applied in human urine analysis. The obtained results are satisfactory, revealing that the developed method based on CHN@MoS2 nanomaterials has important applications for FA determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Akbar, A. Anwar, and Q. Kanwal, Anal. Biochem., 2016, 510, 98.

    Article  CAS  PubMed  Google Scholar 

  2. M. Venu, Int. J. Electrochem. Sci., 2018, 11702.

    Google Scholar 

  3. H. Rajabi, and M. Noroozifar, Mater. Sci. and Eng. C, 2017, 75, 791.

    Article  CAS  Google Scholar 

  4. S. Güney, J. Electroanal. Chem., 2019, 854, 113518.

    Article  Google Scholar 

  5. F. Chekin, F. Teodorescu, Y. Coffinier, G.-H. Pan, A. Barras, R. Boukherroub, and S. Szunerits, Biosens. Bioelectron., 2016, 85, 807.

    Article  CAS  PubMed  Google Scholar 

  6. W. Ren, Y. Fang, and E. Wang, ACS Nano, 2011, 5, 6425.

    Article  CAS  PubMed  Google Scholar 

  7. S. Ulusoy, H. Acidereli, S. Erdoḡan, and H. İbrahim Ulusoy, RSC Adv., 2016, 6, 40115.

    Article  CAS  Google Scholar 

  8. X. Li and L. Chen, ACS appl. mater. interfaces, 2016, 8, 31832.

    Article  CAS  PubMed  Google Scholar 

  9. A. A. Abdelwahab and Y. Shim, Sens. Actuators, 2015, 221, 659.

    Article  CAS  Google Scholar 

  10. Q. Wang, H. Si, L. Zhang, L. Li, X. Wang, and S. Wang, Anal. Chim. Acta, 2020, 1104, 69.

    Article  CAS  PubMed  Google Scholar 

  11. J. P. Winiarski, R. Rampanelli, J. C. Bassani, D. Z. Mezalira, and C. L. Jost, J. Food Compos. Anal, 2020, 92, 103511.

    Article  CAS  Google Scholar 

  12. Y. Yi, D. Zhang, Y. Ma, X. Wu, and G. Zhu, Anal. Chem., 2019, 91, 2908.

    Article  CAS  PubMed  Google Scholar 

  13. J. Hu, K. T. Ho, X. U. Zou, W. H. Smyrl, A. Stein, and P. Buhlmann, Anal. Chem., 2015, 87, 2981.

    Article  CAS  PubMed  Google Scholar 

  14. K. Hsieh, B. S. Ferguson, M. Eisenstein, K. W. Plaxco, and H. T. Soh, Acc. Chem. Res., 2015, 48, 911.

    Article  CAS  PubMed  Google Scholar 

  15. A. Kotani, M. Kaneko, K. Machida, K. Yamamoto, and H. Hakamata, Anal. Sci., 2020, 10.2116/analsci.2120p2049.

    Google Scholar 

  16. O. Parlak, A. Incel, L. Uzun, A. P. F. Turner, and A. Tiwari, Biosens. Bioelectron., 2017, 89, 545.

    Article  CAS  PubMed  Google Scholar 

  17. A. Sinha, Dhanjai, B. Tan, Y. Huang, H. Zhao, X. Dang, J. Chen, and R. Jain, TrAC, Trends Anal. Chem., 2018, 102, 75.

    Article  CAS  Google Scholar 

  18. M. Sharifuzzaman, S. C. Barman, M. A. Zahed, N. J. San, and J. Y. Park, J. Electrochem. Soc., 2019, 166, B249.

    Article  CAS  Google Scholar 

  19. D. Zhang, Y. Ma, O. J. Kingsford, J. Qian, and Y. Yi, J. Electrochem. Soc., 2019, 166, B1392.

    Article  CAS  Google Scholar 

  20. B. Mao, B. Wang, F. Yu, K. Zhang, Z. Zhang, J. Hao, J. Zhong, Y. Liu, and W. Shi, Int. J. Hydrogen Energy, 2018, 43, 11038.

    Article  CAS  Google Scholar 

  21. L. Xing and Z. Ma, Microchim. Acta, 2015, 183, 257.

    Article  Google Scholar 

  22. Y. Wang, G. Ning, H. Bi, Y. Wu, G. Liu, and Y. Zhao, Electrochim. Acta, 2018, 285, 120.

    Article  CAS  Google Scholar 

  23. S. K. Tuteja, T. Duffield, and S. Neethirajan, Nanoscale, 2017, 9, 10886.

    Article  CAS  PubMed  Google Scholar 

  24. S. Wang, B. Y. Guan, L. Yu, and X. W. D. Lou, Adv. Mater., 2017, 29.

  25. L. Song, X. Wang, F. Wen, L. Niu, X. Shi, and J. Yan, Int. J. Hydrogen Energy, 2016, 41, 18942.

    Article  CAS  Google Scholar 

  26. P. Jing, H. Yi, S. Xue, Y. Chai, R. Yuan, and W. Xu, Anal. Chim. Acta, 2015, 853, 234.

    Article  CAS  PubMed  Google Scholar 

  27. A. Ambrosi, Z. Sofer, and M. Pumera, Small, 2014, 11, 605.

    Article  PubMed  Google Scholar 

  28. A. S. Subramanian, J. N. Tey, L. Zhang, B. H. Ng, S. Roy, J. Wei, and X. M. Hu, Polymer, 2016, 82, 285.

    Article  CAS  Google Scholar 

  29. D. Geng, X. Bo, and L. Guo, Sens. Actuators, B, 2017, 244, 131.

    Article  CAS  Google Scholar 

  30. S. Y. Park, Y. H. Kim, S. Y. Lee, W. Sohn, J. E. Lee, D. H. Kim, Y.-S. Shim, K. C. Kwon, K. S. Choi, H. J. Yoo, J. M. Suh, M. Ko, J.-H. Lee, M. J. Lee, S. Y. Kim, M. H. Lee, and H. W. Jang, J Mater. Chem. A, 2018, 6, 5016.

    Article  CAS  Google Scholar 

  31. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, J. Am. Chem. Soc., 2011, 133, 7296.

    Article  CAS  PubMed  Google Scholar 

  32. H. Song, Y. Ni, and S. Kokot, Biosens. Bioelectron., 2014, 56, 137.

    Article  CAS  PubMed  Google Scholar 

  33. E. B. Bahadır and M. K. Sezgintürk, TrAC, Trends Anal. Chem., 2016, 76, 1.

    Article  Google Scholar 

  34. R. He, J. Hua, A. Zhang, C. Wang, J. Peng, W. Chen, and J. Zeng, Nano lett., 2017, 17, 4311.

    Article  CAS  PubMed  Google Scholar 

  35. L. Li, W. Zhang, X. Wang, S. Zhang, Y. Liu, M. Li, G. Zhu, Y. Zheng, Q. Zhang, T. Zhou, W. K. Pang, W. Luo, Z. Guo, and J. Yang, ACS Nano, 2019, 13, 7939.

    Article  CAS  PubMed  Google Scholar 

  36. Y. Chen, W. C. Peng, and X. Y. Li, Nanotechnology, 2017, 28, 205.

    Google Scholar 

Download references

Acknowledgements

This study was financed by the Major Program of main disease in Xiamen City by Xiamen Science and Technology Bureau and Xiamen Municipal Health Commission (No. 3502Z2017050); Joint Project of health education in Fujian Province (2019-WJ-35).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiming Ye, Zhiying Su or Yun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, H., Song, L., Zhang, F. et al. Highly Sensitive Electrochemical Detection of Folic Acid by Using a Hollow Carbon Nanospheres@molybdenum Disulfide Modified Electrode. ANAL. SCI. 37, 575–580 (2021). https://doi.org/10.2116/analsci.20P297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20P297

Keywords

Navigation