Evaluation of commercial aerosol insecticides for control of Aedes aegypti susceptible or resistant to pyrethroids

Autores/as

  • Alma Delia López-Solis Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública. Tapachula, Chiapas, Mexico.
  • Ashley J. Janich Colorado State University, College of Veterinary Medicine and Biomedical Sciences, Department of Microbiology, Immunology and Pathology, Arthropod Borne and Infectious Diseases Laboratory. Fort Collins, Colorado, USA.
  • Francisco Solis-Santoyo Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública. Tapachula, Chiapas, Mexico.
  • José Genaro Ordóñez-González Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública. Tapachula, Chiapas, Mexico.
  • Gabriel Fuentes-Maldonado Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública. Tapachula, Chiapas, Mexico.
  • Karla Saavedra-Rodríguez Colorado State University, College of Veterinary Medicine and Biomedical Sciences, Department of Microbiology, Immunology and Pathology, Arthropod Borne and Infectious Diseases Laboratory. Fort Collins, Colorado, USA.
  • Cuauhtémoc Villarreal-Treviño Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública. Tapachula, Chiapas, Mexico.
  • William C. Black IV Colorado State University, College of Veterinary Medicine and Biomedical Sciences, Department of Microbiology, Immunology and Pathology, Arthropod Borne and Infectious Diseases Laboratory. Fort Collins, Colorado, USA.
  • Américo D. Rodríguez Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública. Tapachula, Chiapas, Mexico.
  • Rosa Patricia Penilla-Navarro Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública. Tapachula, Chiapas, Mexico.

DOI:

https://doi.org/10.21149/14232

Palabras clave:

Aedes aegypti, aerosols, insecticide resistance, control, indoor space spray

Resumen

Objective. To evaluate indoor use of commercial aerosols for dengue vector mosquito control, and estimate the number of treatable houses per can. Materials and methods. Four aerosol products containing combinations of pyrethroids (two containing propoxur and one containing synergists too), were evaluated with mosquitoes in a room of a Tapachulastyle house. Eight cages containing 20 insecticide susceptible or resistant females were hung from tripods, another set was placed in sheltered areas of the room. From the entrance of the room, one of 4-9 concentrations was sprayed for each aerosol, leaving the mosquitoes for 30 min after sprayed. Mortality was recorded after 24 h and lethal concentrations were calculated. Results. Aerosol A had the highest LC50, with 0.308 g for mosquitoes hanging from tripods and 0.453 g for sheltered mosquitoes; followed by aerosols C, D and B, with statistical differences between types of exposure. Conclusions. Aerosols B-D could spray 20-25 3-room houses (56 m3-room), killing all resistant mosquitoes. Aerosols may become a good tool for indoor mosquito control, if the optimal concentration and correct spray method are used.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Achmadi UF, Pauluhn J. Household insecticides: evaluation and as¬sessment of inhalation toxicity: a workshop summary. Exp Toxicol Pathol. 1998;50(1):67-72.

Osaka K, Ha DQ, Sakakihara Y, Khiem HB, Umenai T. Control of dengue fever with active surveillance and the use of insecticidal aerosol cans. Southeast Asian J Trop Med Public Health. 1999;30:484-8.

Loroño-Pino MA, Chan-Dzul YN, Zapata-Gil R, Carrillo-Solís C, Uitz- Mena A, García-Rejón JE, et al. Household use of insecticide consumer products in a dengue-endemic area in México. Trop Med Int Health. 2014;19(10):1267-75. https://doi.org/10.1111/tmi.12364

Pai HH, Hsu EL. Effectiveness and acceptance of total release insecticidal aerosol cans as a control measure in reducing dengue vectors. J Environ Health. 2014;76(6):68-74.

Ordóñez-González JG, Thirion J, García A, Rodríguez AD. Effectiveness of indoor ultra-low volume application of Aqua Reslin® Super during an emergency. J Am Mosq Control Assoc. 2011;27(2):162-4. https://doi.org/10.2987/10-6065.1

Ordoñez-González JG, Cisneros-Vázquez LA, Danis-Lozano R, Valdés- Delgado KM, Fernández-Salas I, Penilla-Navarro RP, et al. Nebulización térmica intradomiciliar de la mezcla de flupyradifurona y transflutrina en mosquitos Aedes aegypti susceptibles y resistentes a piretroides en el Sur de México. Salud Publica Mex. 2020;62(4):432-8. https://doi.org/10.21149/11142

Paredes-Esquivel C, Lenhart A, del Río R, Leza MM, Estrugo M, Chalco E, et al. The impact of indoor residual spraying of deltamethrin on dengue vector populations in the Peruvian Amazon. Acta Trop. 2016;154:139-44. https://doi.org/10.1016/j.actatropica.2015.10.020

Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol. 2000;45:371-91.

Marcombe S, Mathieu RB, Pocquet N, Riaz MA, Poupardin R, Sélior S, et al. Insecticide resistance in the dengue vector Aedes aegypti from Martinique: distribution, mechanisms and relations with environmental factors. PLoS One. 2012;7(2): e30989. https://doi.org/10.1371/journal.pone.0030989

Kawada H, Oo SZ, Thaung S, Kawashima E, Maung YN, Thu HM, et al. Co-occurrence of point mutations in the voltage-gated sodium channel of pyrethroid-resistant Aedes aegypti populations in Myanmar. PLoS Negl Trop Dis 2014;8:3-10. https://doi.org/10.1371/journal.pntd.0003032

Linss JG, Brito LP, Garcia GA, Araki AS, Bruno RV, Lima JB, et al. Distribution and dissemination of the Val1016Ile and Phe1534Cys Kdr mutations in Aedes aegypti Brazilian natural populations. Parasit Vectors. 2014;7:25. https://doi.org/10.1186/1756-3305-7-25

Saavedra-Rodriguez K, Urdaneta-Marquez L, Rajatileka S, Moulton M, Flores AE, Fernandez-Salas I, et al. A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect Mol Biol 2007;16(6): 785-98. https://doi.org/10.1111/ j.1365-2583.2007.00774.x

García GP, Flores AE, Fernández-Salas I, Saavedra-Rodríguez K, Reyes- Solis G, Lozano-Fuentes S, et al. Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti in México. PLoS Negl Trop Dis. 2009;3(10):e531. https://doi.org/10.1371/journal.pntd.0000531

Aponte HA, Penilla RP, Dzul-Manzanilla F, Che-Mendoza A, López AD, Solis F, et al. The pyrethroid resistance status and mechanisms in Aedes aegypti from the Guerrero state, Mexico. Pest Biochem and Physiol. 2013;107:226-34. https://doi.org/10.1016/j.pestbp.2013.07.005

Saavedra-Rodriguez K, Beaty M, Lozano-Fuentes S, Denham S, Garcia- Rejon J, Reyes-Solis G, et al. Local evolution of pyrethroid resistance offsets gene flow among Aedes aegypti collections in Yucatan State, Mexico. Am J Trop Med Hyg. 2015;92(1): 201-9. https://doi.org/10.4269/ ajtmh.14-0277

Saavedra-Rodriguez K, Maloof FV, Campbell CL, Garcia-Rejon J, Len¬hart A, Penilla P, et al. Parallel evolution of vgsc mutations at domains IS6, IIS6 and IIIS6 in pyrethroid resistant Aedes aegypti from Mexico. Sci Rep. 2018;8(1):6747. https://doi.org/10.1038/s41598-018-25222-0

Kuri-Morales PA, Correa-Morales F, González-Acosta C, Moreno-Gar¬cia M, Dávalos-Becerril E, Benitez-Alva JI, et al. Efficacy of 13 commercial household aerosol insecticides against Aedes aegypti (Diptera: Culicidae) from Morelos, Mexico. J Med Entomol. 2018;55(2):417-22. https://doi.org/10.1093/jme/tjx212

Moreno J, Falcó JV, Oltra MT, Jiménez R. The requirement for the inclu¬sion of formulation efficacy trials in pesticide preregistration evaluations. Pest Manag Sci. 2008;64(5): 527-35. https://doi.org/10.1002/ps.1536

Perich MJ, Davila G, Turner A, Garcia A, Nelson M. Behavior of resting Aedes aegypti (Culicidae: Diptera) and its relation to ultra-low volume adulticide efficacy in Panama City, Panama. J Med Entomol. 2000;37(4):541- 6. https://doi.org/10.1603/0022-2585-37.4.541

Georghiou GP, Taylor CE. Operational influences in the evolution of insecticide resistance. J Econ Entomol. 1977;70: 653-658. https://doi. org/10.1093/jee/70.5.653

Rodriguez AD, Penilla RP, Henry-Rodríguez M, Hemingway J, Francisco Betanzos A, Hernández-Avila JE. Knowledge and beliefs about malaria transmission and practices for vector control in southern Mexico. Salud Publica Mex. 2003; 45(2):110-6.

Astatkie A. Knowledge and practice of malaria prevention methods among residents of Arba Minch town and Arba Minch Zuria district, southern Ethiopia. Ethiop J Health Sci. 2010;20(3):185-93. https://doi. org/10.4314/ejhs.v20i3.69448

Mora-Ruiz M, Penilla RP, Ordóñez JG, López AD, Solis F, Torres-Estrada JL, Rodríguez A. Socioeconomic factors, attitudes and practices associated with malaria prevention in the coastal plain of Chiapas, Mexico. Malaria J. 2014;13:157. https://doi.org/10.1186/1475-2875-13-157

Instituto Regional de Estudios en Sustancias Tóxicas, Universidad Nacional de Costa Rica. Manual de Plaguicidas de Centroamérica. Costa Rica, 2022 [cited July, 2022]. Available from: http://www.plaguicidasdecen¬troamerica.una.ac.cr/index.php/

Richardson JA. Permethrin spot-on toxicoses in cats. J Vet Emerg Crit Care. 2000;10:103-6 [cited July, 2022]. Available from: https://www. aspcapro.org/sites/default/files/d-veccs_april00_0.pdf

Descargas

Publicado

2023-03-10

Cómo citar

1.
López-Solis AD, Janich AJ, Solis-Santoyo F, Ordóñez-González JG, Fuentes-Maldonado G, Saavedra-Rodríguez K, Villarreal-Treviño C, Black IV WC, Rodríguez AD, Penilla-Navarro RP. Evaluation of commercial aerosol insecticides for control of Aedes aegypti susceptible or resistant to pyrethroids. Salud Publica Mex [Internet]. 10 de marzo de 2023 [citado 23 de mayo de 2024];65(2 mar-abr):151-9. Disponible en: https://www.saludpublica.mx/index.php/spm/article/view/14232

Artículos más leídos del mismo autor/a