Mathematica Bohemica, Vol. 146, No. 1, pp. 47-54, 2021


A formula for the number of solutions of a restricted linear congruence

K. Vishnu Namboothiri

Received December 25, 2018.   Published online January 15, 2020.

Abstract:  Consider the linear congruence equation $x_1+\ldots+x_k \equiv b\pmod{n^s}$ for $b\in\mathbb Z$, $n,s\in\mathbb N$. Let $(a,b)_s$ denote the generalized gcd of $a$ and $b$ which is the largest $l^s$ with $l\in\mathbb N$ dividing $a$ and $b$ simultaneously. Let $d_1,\ldots, d_{\tau(n)}$ be all positive divisors of $n$. For each $d_j\mid n$, define $\mathcal{C}_{j,s}(n) = \{1\leq x\leq n^s (x,n^s)_s = d^s_j\}$. K. Bibak et al. (2016) gave a formula using Ramanujan sums for the number of solutions of the above congruence equation with some gcd restrictions on $x_i$. We generalize their result with generalized gcd restrictions on $x_i$ and prove that for the above linear congruence, the number of solutions is $\frac1{n^s}\sum\limits_{d\mid n}c_{d,s}(b)\prod\limits_{j=1}^{\tau(n)}\Bigl(c_{n/{d_j},s}\Bigl(\frac{n^s}{d^s}\Big)\Big)^{g_j}$ where $g_j = |\{x_1,\ldots, x_k\}\cap\mathcal{C}_{j,s}(n)|$ for $j=1,\ldots, \tau(n)$ and $c_{d,s}$ denotes the generalized Ramanujan sum defined by E. Cohen (1955).
Keywords:  restricted linear congruence; generalized gcd; generalized Ramanujan sum; finite Fourier transform
Classification MSC:  11D79, 11P83, 11L03, 11A25, 42A16


References:
[1] T. M. Apostol: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, New York (1976). DOI 10.1007/978-1-4757-5579-4 | MR 0434929 | Zbl 0335.10001
[2] K. Bibak, B. M. Kapron, V. Srinivasan: On a restricted linear congruence. Int. J. Number Theory 12 (2016), 2167-2171. DOI 10.1142/S179304211650130X | MR 3562020 | Zbl 1353.11066
[3] K. Bibak, B. M. Kapron, V. Srinivasan, R. Tauraso, L. Tóth: Restricted linear congruences. J. Number Theory 171 (2017), 128-144. DOI 10.1016/j.jnt.2016.07.018 | MR 3556678 | Zbl 1353.11067
[4] K. Bibak, B. M. Kapron, V. Srinivasan, L. Tóth: On an almost-universal hash function family with applications to authentication and secrecy codes. Int. J. Found. Comput. Sci. (2018), 357-375. DOI 10.1142/S0129054118500089 | MR 3799234 | Zbl 1391.94730
[5] E. Cohen: An extension of Ramanujan's sum. Duke Math. J. 16 (1949), 85-90. DOI 10.1215/S0012-7094-49-01607-5 | MR 0027781 | Zbl 0034.02104
[6] E. Cohen: An extension of Ramanujan's sum. II. Additive properties. Duke Math. J. 22 (1955), 543-550. DOI 10.1215/S0012-7094-55-02260-2 | MR 0072163 | Zbl 0067.02205
[7] E. Cohen: A class of arithmetical functions. Proc. Natl. Acad. Sci. USA 41 (1955), 939-944. DOI 10.1073/pnas.41.11.939 | MR 0075230 | Zbl 0066.29203
[8] J. D. Dixon: A finite analogue of the Goldbach problem. Can. Math. Bull. 3 (1960), 121-126. DOI 10.4153/CMB-1960-013-5 | MR 0123519 | Zbl 0093.25902
[9] D. N. Lehmer: Certain theorems in the theory of quadratic residues. Am. Math. Monthly 20 (1913), 151-157. DOI 10.2307/2972413 | MR 1517830 | JFM 44.0248.09
[10] V. A. Liskovets: A multivariate arithmetic function of combinatorial and topological significance. Integers 10 (2010), 155-177. DOI 10.1515/INTEG.2010.012 | MR 2601316 | Zbl 1230.11007
[11] P. J. McCarthy: The generation of arithmetical identities. J. Reine Angew. Math. 203 (1960), 55-63. DOI 10.1515/crll.1960.203.55 | MR 0111712 | Zbl 0101.28002
[12] H. L. Montgomery, R. C. Vaughan: Multiplicative Number Theory I: Classical Theory. Cambridge Studies in Advanced Mathematics 97. Cambridge University Press, Cambridge (2007). DOI 10.1017/cbo9780511618314 | MR 2378655 | Zbl 1142.11001
[13] K. V. Namboothiri: On the number of solutions of a restricted linear congruence. J. Number Theory 188 (2018), 324-334. DOI 10.1016/j.jnt.2018.01.013 | MR 3778637 | Zbl 06855850
[14] C. A. Nicol, H. S. Vandiver: A Von Sterneck arithmetical function and restricted partitions with respect to a modulus. Proc. Natl. Acad. Sci. USA 40 (1954), 825-835. DOI 10.1073/pnas.40.9.825 | MR 0063399 | Zbl 0056.04001
[15] H. Rademacher: Aufgabe 30. Jahresber. Dtsch. Math.-Ver. 34 (1925), page 158. (In German.)
[16] H. Rademacher: Aufgabe 30. Lösung von A. Brauer. Jahresber. Dtsch. Math.-Ver. 35 (1926), 92-94. (In German.) JFM 52.0139.03
[17] J. W. Sander, T. Sander: Adding generators in cyclic groups. J. Number Theory 133 (2013), 705-718. DOI 10.1016/j.jnt.2012.08.021 | MR 2994382 | Zbl 1353.11018
[18] L. Tóth: Counting solutions of quadratic congruences in several variables revisited. J. Integer Seq. 17 (2014), Article 14.11.6, 23 pages. MR 3291084 | Zbl 1321.11041

Affiliations:   K. Vishnu Namboothiri, Department of Mathematics, Government College, Ambalapuzha, Alappuzha 688 561, Kerala, India, and Department of Collegiate Education, Government of Kerala, 6th Floor, Vikas Bhavan, Palayam, Thiruvananthapuram 695 033, Kerala, India, e-mail: kvnamboothiri@gmail.com


 
PDF available at: