Czechoslovak Mathematical Journal, Vol. 73, No. 3, pp. 971-978, 2023


The tangent function and power residues modulo primes

Zhi-Wei Sun

Received September 12, 2022.   Published online April 13, 2023.

Abstract:  Let $p$ be an odd prime, and let $a$ be an integer not divisible by $p$. When $m$ is a positive integer with $p\equiv1\pmod{2m}$ and $2$ is an $m$th power residue modulo $p$, we determine the value of the product $\prod_{k\in R_m(p)}(1+\tan(\pi ak/p))$, where $R_m(p)=\{0<k<p k\in\mathbb Z \text{is an} m\text{th power residue modulo} p\}.$ In particular, if $p=x^2+64y^2$ with $x,y\in\mathbb Z$, then $\prod_{k\in R_4(p)} \Big(1+\tan\pi\frac{ak}p\Big)=(-1)^y(-2)^{(p-1)/8}$.
Keywords:  power residues modulo prime; the tangent function; identity
Classification MSC:  11A15, 33B10, 05A19


References:
[1] B. C. Berndt, R. J. Evans, K. S. Williams: Gauss and Jacobi Sums. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, New York (1998). MR 1625181 | Zbl 0906.11001
[2] D. A. Cox: Primes of the Form $x^2+ny^2$: Fermat, Class Field Theory, and Complex Multiplication. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs and Tracts. John Wiley & Sons, New York (1989). DOI 10.1002/9781118400722 | MR 1028322 | Zbl 0956.11500
[3] K. Ireland, M. Rosen: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics 84. Springer, New York (1990). DOI 10.1007/978-1-4757-2103-4 | MR 1070716 | Zbl 0712.11001
[4] Z.-W. Sun: Trigonometric identities and quadratic residues. Publ. Math. Debr. 102 (2023), 111-138. DOI 10.5486/PMD.2023.9352 | Zbl 7650970

Affiliations:   Zhi-Wei Sun, Department of Mathematics, Nanjing University, West Building, Gulou Campus, No. 22 Hankou Road, Nanjing 210093, P. R. China, e-mail: zwsun@nju.edu.cn


 
PDF available at: