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A degradation assessment technique based on an online improved symbol sequence entropy (online ISSE) and a
logistic regression model is proposed in this paper. Firstly, the threshold factor is introduced to retain the ‘coarse
graining’ information of direction changing and amplitude information, the ‘sensitivity’ of improved symbol se-
quence entropy (SSE) to impact components is reduced and improved symbol sequence entropy (ISSE) is pro-
posed. Then, a sliding window and Weibull distribution theory are used to effectively filter out the influence of
fluctuations in the ISSE feature sequence, forming the degradation feature named online ISSE. Finally, a logistic
regression model is trained and constructed, and the health factor CV is calculated online to assess the degradation
condition of the unknown signal samples. The lifetime vibration signal of the hoisting gearbox monitored from
#8114 quay crane of the Shanghai Port Container Terminal is introduced for instance analysis. The results show
that the proposed ISSE has a better effect in describing the complexity pattern than the SSE algorithm and that the
degradation condition can be tracked and assessed accurately based on the technique proposed.

1. INTRODUCTION

The quay crane, also known as the quayside container crane
or bridge crane, is a large harbor hoisting crane used for load-
ing and unloading containers at harbors. Among the main com-
ponents of the quay crane, the hoisting mechanism is the im-
portant power mechanism which is generally composed of a
driving motor, a hoisting gearbox, a coiling block and a wire
rope. The quay crane usually works under special operational
conditions in the harsh environment full of sea breeze and
noise. In special periodic hoisting operations, a heavy con-
tainer with high speed will bring about large impact on the
hoisting mechanism in the form of quick start and stop occur,
or the container frequently passing by the track hinge point.
Performance degradation or even sudden failure will occur un-
der the long-term influence described above,1 leading to down-
time or even casualties. At present, the hoisting gearbox has
become a typical vulnerable part and a health weakness in the
quay crane health management. The degradation trend can be
tracked accurately on the condition that the vibration signals
are monitored online and analyzed effectively, which will lay a
foundation for Condition-Based Maintenance (CBM) and im-
prove the safety and reliability of the quay crane.2

Feature extraction, which is the foundation of the degrada-
tion condition assessment, is the critical step in CBM. The
main target of feature extraction is the mining health indicator
which is able to reflect a performance degradation trend quan-
titatively and accurately. At present, linear analysis methods
including time domain, frequency domain and time-frequency
domain are widely used.3–5 Some typical indicators proposed
include spectral kurtosis,6, 7 spectral L2/L1 norm,8 kurtosis9

etc. Considering the nonlinear and non-stationary character
of mechanical vibration signals, a complexity analysis method
is used based on information from entropy and fractal dimen-
sion and is usually employed in feature analysis of rotating

machinery such as bearings and gears in recent years, such
as modified multi-scale symbolic dynamic entropy,10 LMD-
sample entropy,11 multi scale permutation entropy,12, 13 mor-
phological fractal dimension14 etc.

Some previous studies have shown that vibration signals of
the quay crane have a certain degree of complexity character.
However, the accurate complexity value reflecting the degra-
dation condition is hard to be extracted because of the random
shock components in the signal caused by the environment
and operation conditions. As a “coarse grain” signal analysis
method,15 symbol dynamics analysis is able to process time
series and preserve the direction exchanging information with
symbolic methods. The SSE has been successfully applied in
electroencephalogram (EEG) signal analysis,16–18 these stud-
ies have proven the advantages including simple calculation,
fast calculation speed and strong anti-interference ability. At
present, the SSE algorithm is rarely used in the fault prognos-
tic field of mechanical equipment. Considering the complexity
and large impact character of the quay crane vibration signal,
the ‘coarse graining’ advantage in amplitude processing of SSE
will be employed in this paper for the degradation feature ex-
traction.

On the basis of feature extraction, the degradation condition
assessment is studied for assessing the performance degrada-
tion condition through the degradation feature indicators. Cur-
rent studies mainly focus on data-based assessment methods
in three aspects as follows. The first type is based on probabil-
ity similarity including the Gaussian Mixture Model (GMM),19

and the Hidden Markov model (HMM).20 The second type is
based a on reconstruction model such as the logistic regres-
sion model.21 The third method is mainly based on the bound-
ary model including Markov distance,22 fuzzy clustering23 etc.
Among these methods above, the logistic regression model is
able to reconstruct the model with training samples. The model
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offset of the samples will be calculated to assess the degrada-
tion condition, the advantages are reflected in simple princi-
ple and fast calculation speed. This model is suitable for the
dichotomy of health and failure condition, and additionally,
the model offset can characterize degradation degree quantita-
tively. The logistic regression model is employed in the degra-
dation condition assessment considering the advantages above.

In summary, an online degradation condition assessment
technique is proposed based on the online improved symbol
sequence entropy (online ISSE) and logistic regression model.
The ISSE method is proposed by introducing the threshold fac-
tor based on SSE. The degradation feature named online ISSE
is featured with a sliding window and the Weibull distribu-
tion theory. The online degradation condition can be evaluated
combined with the logistic regression model. A lifetime vi-
bration signal of a hoisting gearbox is introduced for instance
analysis.

The paper is organized as follows: Section 2 introduces ba-
sic theory including the symbol sequence entropy, the Weibull
distribution, and the logistic regression model. Section 3 pro-
poses improvement on SSE and expounds ISSE. The proce-
dure of the degradation condition assessment technique is ex-
pounded in Section 4. In Section 5, the technique is verified,
and the results are discussed. Finally, the conclusion of this
paper is given in Section 6.

2. BASIC THEORY

2.1. Symbolic Sequence Entropy
The SSE is proposed and mainly applied in EEG signal anal-

ysis. The basic principle is as follows.24

Assuming that R is a non-stationary random EEG signal of
length N . Firstly, the signal is symbolized as Eq. (1) and the
changing direction information of the EEG signal is retained
by the three symbols including 0, 1, and 2.

x(i) =


0, R(i+ 1) < R(i)

1, R(i+ 1) = R(i)

2, R(i+ 1) > R(i)

. (1)

Secondly, a vector X(i) of length m is constructed with the
sliding window method in Eq. (2). The possible symbol pat-
terns inX(i) will reach a total ofM = 3m because of the three
symbols defined above.

X(i) = [x(i), x(i+ 1), ..., x(i+ (m− 1))],

i = 1, 2..., N −m. (2)

Thirdly, the probability of each symbol pattern in X(i) is
calculated as Eq. (3) where Nj represents the number of each
symbol pattern.

pj =
Nj

N −m
, j = 1, 2, ...,M. (3)

In the end, the normalized SSE is calculated according to
Eq. (4) which should satisfy N > 3m generally.

SSE(m) =

−
M∑
j=1

pj lg pj

lgM
. (4)

2.2. Weibull Distribution

The Weibull distribution is recognized as the most suitable
distribution for reliability analysis in engineering.25, 26 This
distribution has been widely used in failure analysis on ma-
chinery, electronics, chemicals and materials. The commonly
used methods include the single parameter, the two-parameter
and the three-parameter model. The two-parameter model is
employed in this paper for degradation feature analysis.

The cumulative density function (degree of failure) of the
two-parameter Weibull distribution is as follows27:

F (t) = 1− exp

{
−
[
t

η

]β}
(t ≥ 0); (5)

where ν means the scale parameter and β means the shape pa-
rameter. The reliability is defined as follows:

R(t) = 1− F (t) = exp

{
−
[
t

η

]β}
(t ≥ 0). (6)

2.3. Logistic Regression Model

The logistic regression theory is a multi-parameter statistical
method in probability statistics. This theory is able to describe
the optimal mapping relationship between a set of multivari-
ate and a set of dichotomous variables.28 For any indepen-
dent variable, the probability P of the response variable will
increase according to the S-curve with the independent vari-
able.

The mathematical expression of logistic regression is as fol-
lows:29

Pi(yi = 1|xi) =
eα+

∑
βixi

1 + eα+
∑
βixi

; (7)

where xi is a k-dimensional independent variable, yi is the ob-
served response variable. The equation of yi = 1 means the
event (device performance degradation) occurs while yi = 0
means the event does not occur. Pi represents the occurring
probability of the ith event, α is the regression intercept and β
is the regression coefficient.

3. IMPROVED SYMBOLIC SEQUENCE
ENTROPY

As introduced above, the symbol’s type is determined by the
magnitude difference of adjacent points in SSE which reflects
the changing direction of the signal with symbols 1, 2, 3 sensi-
tively. However, there are many noise and random shock com-
ponents in the online vibration signal of the quay crane. The
components will affect the SSE value sensitively leading to an
inaccurate result of complexity pattern in the signal. There-
fore, it is necessary to improve the symbol pattern for reducing
the sensitivity to direction changes.

In response to this issue, threshold factor a is introduced to
keep the changing direction information as well as the ampli-
tude changing information coarsely. The improved symbolic
pattern is as follows where five symbols are introduced, and
the division pattern is improved.
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(a) Symbol sequence before improvement

(b) Symbol sequence after improvement

Figure 1. Comparison of different symbol effect.

x(i) =



3, R(i+ 1)−R(i) ≥ 3a

1, a ≤ R(i+ 1)−R(i) < 3a

2, −a ≤ R(i+ 1)−R(i) < a

0,−3a ≤ R(i+ 1)−R(i) < a

4, R(i+ 1)−R(i) < −3a

. (8)

The threshold factor determines the coarse degree of the
symbolic pattern division. Considering the pattern stability in
the degradation condition signal, the threshold factor is set as
twice the standard deviation for the degradation condition sig-
nal.

A typical vibration RMS sequence of the hoisting gearbox
as an example, assuming that the threshold factor is set as
a = 1.0, the symbol effect comparison is shown in Fig. 1. It
is evident that the sampling points in the difference sequence
whose amplitude is within |a| are all symbolized as 2 by intro-
ducing threshold factor, and the amplitude information is also
retained coarsely with five symbols. The sensitivity of the im-
proved symbol sequence is reduced which enables the pattern
changing law inside the signal to be described.

After the operation of improved symbol process, construct-
ing vectors and calculating probability of each symbol pattern

as Eq. (2) and Eq. (3) were completed. In the end, the improved
symbol sequence entropy (ISSE) can be calculated according
to Eq. (6).

ISSE(m) =

−
M∑
j=1

pj lg pj

lgM
. (9)

4. DEGRADATION CONDITION
ASSESSMENT BASED ON ONLINE ISSE
AND LR MODEL

Based on the ISSE algorithm, a degradation condition as-
sessment technique based the online improved symbol se-
quence entropy (online ISSE) and the logistic regression (LR)
is proposed aiming at the special operation condition for the
quay crane. The flow chart is shown in Fig. 2.

The following five key steps are included in the Fig. 2.
(1) Online monitoring of vibration signals. The condition

monitoring system of the quay crane is used as a platform to
collect vibration signals continuously. Considering the mas-
siveness and low density of the actual monitoring signals, the
vibration RMS sequence Data = xi (i = 1, 2, ...) from the
hoisting gearbox of the quay crane is adopted in reality.

(2) Feature extraction based on ISSE. The vibration RMS
sequence is divided into analysis group Gj (j = 1, 2, . . .) by
setting analysis period T . The division pattern is as follows:

G1 = [x1, x2, ..., xT ];

G2 = [xT+1, xT+2, ...x2T ];

...
Gj = [x(j−1)T+1, x(j−1)T+2, ..., xjT ].

(10)

The calculating threshold factor a and extracting ISSE value
of each group, obtaining the ISSE feature sequence Ij .

(3) Online ISSE feature calculation. The sliding window
width w and step size s are set to obtain sliding window Wq

(q = 1, 2, ...), and each sliding window is an ISSE sequence
with the number of w. The pattern is as follows:

W1 = [I1, I2, ..., Iw];

W2 = [I1+s, I2+s, ..., Is+w];

W3 = [I1+2s, I2+2s, ..., I2s+w];

...
Wq = [I1+(q−1)s, I2+(q−1)s, ..., I(q−1)s+w].

(11)

The Weibull distribution fitting is performed on each slid-
ing window18 and the scale parameter will be obtained which
serves as an online degradation feature online ISSEq of the
window. Moving the sliding window with s step and calcu-
lating online degradation feature curve online ISSE which is
used to track the online degradation character of key compo-
nents in the quay crane.

(4) Logistic regression model construction. Taking typical
health and failure samples as training data, the health indicator
CV are defined as follows:

CV =1−P =1− eα+
∑
βixi

1 + eα+
∑
βixi

=
1

1 + eα+
∑
βixi

. (12)
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Figure 2. Flow chart of degradation condition assessment.

Table 1. Basic specifications of #8114 quay crane.

Number Entry Condition Specification

1 Rated loading Under the spreader 50 t
Under the hanger 62.5 t

2 Gauge 16 m

3 Hoisting height Rail surface 10 m
Under the rail 36 m

4 Hoisting speed Full loading 50 m/min
Empty loading 120 m/min

In this paper, CV is set as 0.95 for the health samples while
CV is set as 0.05 for the samples in the failure condition. The
processing model training and calculating the parameters α
and β, establish the LR based degradation assess model.

(5) Degradation condition assessment. As to the unknown
condition samples, the vibration RMS sequence as step (2)–(3)
and obtaining online ISSE will be processed. After inputting
the degradation feature to the constructed LR model, the value
of CV will be obtained to assess the degradation condition.

5. THE QUAY CRANE HOISTING
GEARBOX DEGRADATION CONDITION
ASSESSMENT

5.1. Lifetime Vibration Dataset of Hoisting
Gearbox

An instance analysis is carried out using the lifetime vibra-
tion signal of the hoisting gearbox. The dataset is monitored
from the #8114 quay crane of Shanghai Port Container Ter-
minal. The equipment type is 50t-22m Shore Rail Container
Crane. An actual example is shown in Fig. 3. The basic speci-
fications are shown in Table 1.

We began to monitor this equipment by means of vibration,
temperature and stress at more than forty measuring points
based on Net-CMAS system since 2007 when the quay crane

(a) #8114 quay crane

(b) hoisting gearbox

Motor

Reel

Hoisting  gearbox

Hoisting mechanism

Figure 3. Actual appearance of #8114 and hoisting gearbox.
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(a) Application diagram

(b) Certification

Figure 4. Description of the Net-CMAS system.

was installed. The applied Net-CMAS system was developed
by our team which has met EU Industrial Control System Out-
line Specification in terms of function, performance and safety
management.30 This system, which is a typical application ex-
ample of China Manufacturing 2025 Industrial Control System
Automation, has reached ICS Compendium Industry 4.0 Level
4 standard. The application and certificate are shown in Fig. 4.

More than forty measuring points of the quay crane are
equipped with vibration, temperature sensor and strain gauges.
An industrial computer is installed in the control room to ac-
complish collection and storage of the online signal. The vi-
bration sensor at vertical direction of high-speed output shaft
of the hoisting gearbox is shown in Fig. 5.

The sampling frequency is 24 kHz and sampling time is 1
second. The sampling interval is set as 10 seconds. The sys-
tem calculates and stores effective value RMS of each sampling
signal, obtaining vibration RMS sequence online. After 7 years
and 8 months, the Net-CMAS system’s alarm went off at the
high-speed input shaft of the hoisting gearbox. The failure oc-
curred on the input shaft roller bearing and the failure mode is
roller abrasion. The worn roller is shown in Fig. 6.

The non-operating data such as a shutdown condition is fil-
tered out automatically, forming a lifetime hoisting gearbox
RMS sequence. The time domain waveform is shown in Fig. 7.
It is evident that the amplitude is constantly increasing as a
whole trend and there are a wide range of impact components.
The amplitude drops rapidly after the inspection point. It is
apparent that the impact components of the RMS sequence
are frequent and large. It is difficult to track the performance

Vibration sensor

Figure 5. Vibration sensors at hoisting gearbox.

degradation condition accurately and can even cause misjudg-
ment. It is necessary to perform accurate degradation feature
analysis.

5.2. ISSE Analysis
When setting an analysis period of T = 3600, the hoisting

gearbox lifetime dataset is divided into 2622 groups Gi (i =
1, 2, ..., 2622). The ISSE of each group is calculated separately
and the threshold factor a is set as two times of the standard
deviation of G1, that is a = 2× s, where s = std(G1), G1 =
[X1, X2, ...XT ].

The ISSE feature sequence Ij of the hoisting gearbox during
the lifetime evolution process is shown in Fig. 8a. The deeper
the degradation, the larger the ISSE value with obvious phases.
However, due to some strong random impact in the RMS se-
quence, there are some obvious fluctuations in the ISSE curve
which affects the accurate tracking of the performance degra-
dation trend. The SSE curve is shown in Fig. 8b for compari-
son. It is evident that the curve is highly volatile and does not
exhibit a trend that is consistent with the degradation process.
The main reason reflects that the original symbol method is
‘sensitive’ to random impact, inducing the main law’s annihi-
lation in the random impact components.

The comparison of ISSE evolution curves with a different
threshold factor is shown in Fig. 9. It is clear that the overall
trend of the four curves does not change, while the ISSE range
and phase sensitivity changes with the factor. The smaller the
value of threshold factor, the smaller ISSE range, the higher the
sensitivity in the initial degradation phase while the sensitivity
is lower in later degradation phase. The main reason reflects
that the threshold factor determines the symbol division crite-
ria. The smaller of the value, the more sensitive it is to the
symbol mode change caused by weak shock, and the lower it
is to the discrimination of the mode changing caused by strong
impact. The degradation process of the gearbox is accompa-
nied by the decrease of the weak impact components and in-
crease of strong impact components. Therefore, the value of
the threshold factor will affect the sensitivity in different per-
formance degradation phases. The threshold factor is set as
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(a) On-site maintenance

(b) Roller abrasion

Roller abrasion

Figure 6. The maintenance of the hoisting gearbox.

a = 2s in this paper for balancing the sensitivity during the
whole degradation process.

The influence of parameter m in ISSE analysis is shown in
Fig. 10. It is evident in Fig. 10a that parameter m does not af-
fect the overall trend of ISSE curve. The symbol pattern types
will increase along with the value of m, and then the ISSE value
will increase consistently. Taking G2150, which has the largest
value in the ISSE curve, as an example, the ISSE value under
different values of m is shown in Fig. 10b. The ISSE value is
almost stable at 1 when the m value is greater than 14. There-
fore, the parameter is set as m = 8 in this paper to improve the
ISSE’s sensitivity to the failure mode.

5.3. Degradation Feature Extraction Based
on Online ISSE

Aiming at reducing the influence of random impact and im-
proving the stability of the degradation feature, the sliding win-

Figure 7. Lifetime vibration RMS sequence waveform.

(a) ISSE curve

(b) SSE curve

Figure 8. The contrast of different SSE curves.
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Figure 9. Influence of different threshold factor on ISSE

(a) ISSE curve on different m

(b) Influence of m on ISSE2150

Figure 10. The influence of m on ISSE value.

(a) ISSE sequence in sliding window

(b) Result of statistical probability

Figure 11. Weibull fitting in sliding window.

dow and the Weibull fitting are used to extract the scale factor,
which is used as an online degradation feature online ISSE.
The sliding window is set as w = 60 and s = 1. The ISSE se-
quence in any sliding window is shown in Fig. 11a and the sta-
tistical rule is verified by the Weibull distribution. The result is
shown in Fig. 11b. The statistical probability of this sequence
is approximately linear which indicates that the ISSE sequence
conforms to the Weibull distribution, and it is effective to use
the Weibull fitting to analyze the statistical pattern.

The Weibull fitting is performed on each sliding window and
the obtained scale parameter curve is shown in Fig. 12. It is ap-
parent that the online ISSE curve is smoother and more stable
than ISSE curve above. The influence of the impact component
is filtered out. The influence of the window width parameter
w is shown in Fig. 13. It is evident that this parameter can af-
fect the filtering ability on random impact components. The
smaller the width, the more obvious the random fluctuation of
the curve which allows more details of the curve. The larger
the width, the more obvious the main curve’s trend. Therefore,
the appropriate sliding window width could be set according
to actual needs.
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Figure 12. The degradation feature of online ISSE.

Figure 13. The influence of sliding window width on online ISSE

5.4. Degradation Condition Assessment
According to the steps of the logistic regression model, the

online ISSE feature samples of health and failure conditions
are selected first. We selected fifty healthy degradation fea-
tures from the 1st to the 50th online ISSE sequence. Pursuant
to the principle above, the deeper the degradation degree, the
higher the value of the online ISSE, and when the maximum
value of online ISSE is 1, we define the degradation feature of
the failure samples as online ISSE=1, and then twenty groups
of failure samples are selected. The health indicator CV is de-
fined as 0.95 and 0.05 respectively, some degradation features
are shown in Table 2.

The selected typical seventy samples are used for the logis-
tic regression model training and the model parameters are
calculated with maximum likelihood method, α = 3.2062,
β = −6.1390. The constructed logistic regression model is
as follows:

CV =
1

1 + e(α+β·online ISSEi)
, (i = 1, 2..., 70). (13)

Taking the online ISSE sequence as the unknown condition
samples and calculating CV based on the logistic regression

Table 2. Degradation feature of typical samples.

Number Condition Online ISSE CV
1

Health condition

0.0587 0.95
2 0.0550 0.95
3 0.0545 0.95
4 0.0549 0.95
5 0.0543 0.95
6

Failure condition

1 0.05
7 1 0.05
8 1 0.05
9 1 0.05
10 1 0.05

model above, the obtained health indicator curve is shown in
Fig. 14a. It is evident that the degradation condition of hoisting
gearbox presents an overall downward trend and the degrada-
tion stages is significant. The value of CV is stable around 0.94
before the 430th sliding window when the hoisting gearbox is
considered in a healthy condition. During the 430th and the
940th sliding window, the curve presents a slight deterioration
with some fluctuations, and the minimum value ofCV is about
0.78. This period is considered as a slight degradation condi-
tion. After about the 940th sliding window, the hoisting gear-
box has a significant performance degradation, and the value
of CV drops to the interval [0.2, 0.5], and the fluctuations are
also apparent at the same time. Consideration is given that the
hoisting gearbox is in a severe degradation condition. After
about the 2000th sliding window, it is obvious that the curve
drops and the minimum value ofCV reaches around 0.12. The
hoisting gearbox is defined as a failure in this period. At about
the 2400th sliding window, the gearbox was overhauled, and
the worn bearing was replaced. After a running-in period, the
CV value rises rapidly, and the hoisting gearbox returns to a
healthy condition. A similar CV curve is shown in Fig. 14b
in which SSE degradation features are selected and calculated.
The curve has large fluctuations due to the volatility of the ISSE
feature, with which some misjudgments on degradation condi-
tion happen.

6. CONCLUSION

In this paper, to solve the problem of degradation assess-
ment for a hoisting gearbox, a degradation assessment tech-
nique based on online improved symbol sequence entropy (on-
line ISSE) and a logistic regression model was proposed. The
lifetime vibration signal of a hoisting gearbox was introduced
for instance analysis. The following conclusions were ob-
tained.

(1) The improved symbol sequence entropy algorithm in-
troduces a threshold factor, which not only retains the direc-
tion changing information, but also depicts “coarse graining”
amplitude changing information. Compared to the symbol se-
quence entropy, the ISSE algorithm was able to exploit the
complexity evolution law in the performance degradation pro-
cess of the hoisting gearbox.

(2) The influence of fluctuations in the ISSE sequence was
able to be filtered combing the sliding window with the Weibull
fitting method, thus improving the stability and forming the
degradation feature named online ISSE, which can track the
performance degradation condition more accurately.

(3) Combining online ISSE with the logistic regression
model, the health factor of the unknown signal can be calcu-
lated online to assess its performance degradation condition.
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(a) Degradation assessment based on Online ISSE

(b) Degradation assessment based on ISSE

Figure 14. Degradation assessment of hoisting gearbox.

(4) Compared to some proposed vibration analysis methods
as preferences,31–33 the technique proposed in this paper was
featuring a hoisting gearbox in the quay crane which had a
typical nonlinear nonstationary and aperiodic character. Some
proposed vibration analysis methods will not be suitable for
this type of signal in the quay crane.

(5) How to decide the number and boundaries of the degra-
dation conditions will be the focus in a future analysis.
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