(_/
NTMSCI 5, No. 3, 162-167 (2017) BISKKA 16

© NewTrendsin Matemaical Sciences

http://dx.doi.org/10.20852/ntmsci.2017.193

Ingtegral equations with delaying arguments for
semi-Markovian processes

Selahattin Maden?, Ulviyya Y. Karimova? and Tamilla |. Nasirova®

lDepartment of Mathematics, Faculty of Arts and Sciencedu@miversity, Ordu, Turkey
2Department of International Relations and Economy, BalaieStiniversity, Baku, Azerbaijan
3Department of Applied Mathematics and Cybernetics, BalateStniversity, Baku, Azerbaijan

Received: 5 January 2017, Accepted: 19 May 2017
Published online: 25 August 2017.

Abstract: In this paper, the Laplace transform of the distributionhaf tluration of a particular semi-Markovian random walk @eri
is obtained in the form of the difference equation.
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1 Introduction

In recent years, random walks with one or two barriers aragpesed to solve a number of very interesting problems in
the fields of inventory, queues and reliability theoriestenaatical biology etc. Many good monographs in this fieldexi

in literature (see [1], [3] and etc.). In particular, a numbé very interesting problems of stock control, queues and
reliability theories can be expressed by means of randorksmalth two barriers. These barriers can be reflecting,
delaying, absorbing, elastic, etc., depending on conpretielems at hand. For instance, it is possible to expresioran
levels of stock in a warehouse with finite volumes or queusirgiems with finite waiting time or sojourn time by means
of random walks with two delaying barriers. Furthermore, thinctioning of stochastics systems with spare equipment
can be given by random walks with two barriers, one of thenelayding and the other one is any type barrier.

It is known that the most of the problems of stock control tlgeés often given by means of random walks or random
walks with delaying barriers (see [1-3] and etc.). Numesiaiudies have been done about step processes of
semi-Markovian random walk with one or two barriers of th@iactical and theoretical importance. But in the most of
these studies the distribution of the process has freeildistn. Therefore the obtained results in this case are
cumbersome and they will not be useful for applications {$e#] and etc.).

A number of studies have been carried out on the examinafitimeoduration of a given half-Markov random walk in
any interval. Busarov [2] is considered the asymptotic biEhiaf random wanderings in random medium with delaying
screen. Lotov [5,6] is studied random walks wandering inipest The asymptotic of distributions in two-sided boundar
problems for random walks defined on a Markov chain is giveg8jnNasirova [7,8] is studied the various semi-markov
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random walk processeswith or without barriers. The Laplmaasform for the distribution of the lower boundary
functional in a semi-Markovian random walk with delayingtier at zerolevel in [5]. Nasirova and Omarova [9] are
given the Laplace transform of the time of the first hit of aag@ilg screen at zero was determined for the process of

semi-Markov random walk with positive drift and negativenjpis.

2 Statement of the problem

Let a sequence of independent and identically distribusécspf random variable§&, ", nS}, k=1, and{&,,n, },
k=1, 0, defined on a probability spa¢e, F, P)such tha‘fki andr)ki are independent random variables éﬁib O,r)ki >
0. Using these random variables we will derive the followstgp processes of semi-Markovian random walk.
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Also let us defined the following semi-Markovian process.
X(t) =X(t) =X (t). (1)

A view of this semi-Markovian random walk process is as falo
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The main aim of this study is to express the Laplace transfirthe distribution function for the duration of the process
X(t)by means of some probability characteristics of randomaiz:diﬂz'rsfki andnki.
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Assume that the random variabfg” has an exponential distribution. Therefore the procéds is reduce to any
complex markov prosess. Also let's the proce$36 stay in any intervala, b], wherea > 0, b > 0.

We introduce the foolwing notations.

£(6;x) = [ e ®'L(t;x)dt- the Laplace transform of the functidrit; x) with respect td.
t=0

AZ{ inf X(s) > b; supX(s)<a|X(O)z}, z<0

0<s<t 0<s<t
K(t;b,alX(0) =2) = P{ inf X(s) > b; sup X(s) < a|X(0) = z} @)
0<s<t 0<s<t

[

K(8;b,aX(0) =2) = /eetP{ inf X(s) > b; sup X(s) <a|X(0):z}dt

0<s<t 0<s<t
t=0

which is obtained from (2) by multiplying both of side thisugdion withe ®t, 8 > 0,t > 0 and then integrating from

zero toeo with respect td.

Therefore the everft; occur one of them the following cases.

Hi={&f >80 >t} Ho={&" <& <t},
Ha={& <t<& } Ha={& <& <t},
Hs={& <t<&}.

On the other hand if we denokg(t; b,a|X(0) = z) = K(t|z), then we can write

t|Z Az U H, A H1 + P(Asz) + P(AzHg) + P(AZH4) + P(AZH5)
=P{& >t;& >t|X(0)=2z}

a t
//P{ff<$5{edSX(s)edy|X(O):z} K(t—sy)
y=bs=0

a t
+/ /P{Ef<ds:ff>t:><(s)edy|><<0>:z}K(t—s|y)
y=bs=0

a t
+/ /P{El’<S;El+€ds;x(s)€dy|x(0):z}K(tfs;|y)
y:béo

a t
+/ /P{Efeds;éfr >t;X(s) € dy|X(0) =z} K(t—s;y).
y:b§0
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From the independence of the random variafgsindn,-, we have

K(t]z) = P{El >t }P{& >t}

- / / P{& <s& dsX(s) € dyX(0) = 2} K(t—sy)
y=bs=0

a t
+P{& >t}/ /P{Ef<ds;X(s)edy|X(0):z} K(t—sly)

y=bs=0

a t
+/ /F’{E{<sffedsX(s)edy|X(0):z}K(t,s|y)
y=bs=0

+P{& >t} / ./‘P{Efeds;X(s)edy|X(0):z} K(t—9gly).
y=bs=0

In this case, we can write

K(t]z) = P{El >t }P{& >t}

+ / / P{& <sé&; edsmaxmin(a;z+X"(s)—n; ;b edy} K(t—s;|y)
y':bko

a t
+P{& >t}/ /P{Efedsmin(a;z+nl+)edy|} K(t—sy)
y=bs=0

a t
+ [ [Ple <s& edsminmaxbiz—X (9)+ny).a € dy} Kt —sy)
y=bs=0

a t
+P{51+>t}/ /P{E{edsmax(b;zfng)edy} Kt—sly)
y=bs=0

sinceé;” > & and&;” < & . Thus we have

K(tlz) = P{&" > t; }P{E1 >t}

+P{& >t}/ / dyP{& edsmin(a;z+n;) <y} Kt—s]ly)
y=hs=0

a t
+ / /dyP{E[<s;El+eds;min[max(b;z—X (s)+ni).a <y} K(t—s;ly)
y':bko

a t
+P{& >t} / /dyP{fdesma)(b;Z—ni)<y} K(t—sy)
y=bs=0
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by simplfying the equation (2). Since the random processgg)*and X~ (t) are independent from the random variables
& ve & respectivelly, according the the total probability forulve can write

P{& <s}=P{& <sminmaxb;z—X"(s))]+n;;a <y} +P{& <smin[maxb;z—X"(s))]+n;;a >y}.

Therefore the equation (2) is reduced to the following défee equation.

a

1 /\+)\*IJ7 _ua / - o
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