Effects of 99mTc on the electrochemical properties of thiamazole in vitro

Authors

  • Safija Herenda University of Sarajevo, Faculty of Science
  • Anera Kazlagić University of Sarajevo, Faculty of Science
  • Edhem Hasković University of Sarajevo, Faculty of Science
  • Jelena Šćepanović Faculty of Metallurgy and Technology, University of Montenegro
  • Jasmina Marušić University "Vitez" Vitez

DOI:

https://doi.org/10.20450/mjcce.2021.2148

Abstract

Thiamazole inhibits the thyroid hormone synthesis and does not inactivate the existing thyroxine and triiodothyronine that circulate in the blood. In this paper Thiamazole electrochemical behavior was monitored by cyclic voltammetry on glassy carbon (GC) electrode in the absence and presence of sodium pertechnetate (99mTc). The influence of different Thiamazole concentrations without and in the presence of radiopharmaceutical 99mTc, the effect of the number of scan cycles, and the effect of 99mTc activity on the appearance of cyclic voltammograms were examined. The results show that there is an observed increase in the reduction peak current with an increase of Thiamazole concentration. It was found that the concentration of the tested drug had a significant effect on its redox characteristics. The results obtained show that the application of different concentrations of sodium pertechnetate exhibits the inhibitory properties of the used radiopharmaceutical on the drug in the treatment of thyroid gland disease.

Author Biographies

Safija Herenda, University of Sarajevo, Faculty of Science

Prof.dr.

Department of Chemistry

Anera Kazlagić, University of Sarajevo, Faculty of Science

Department of Chemistry

Assistant

Edhem Hasković, University of Sarajevo, Faculty of Science

Prof.dr.

Department of Biology

Jelena Šćepanović, Faculty of Metallurgy and Technology, University of Montenegro

Prof.dr.

Jasmina Marušić, University "Vitez" Vitez

Assistant

References

I. Villanueva, C. J. Alva-Sánchez, J. Pacheco-Rosado, The Role of Thyroid Hormones as Inductors of Oxidative Stress and Neurodegeneration, Oxid. Med. Cell. Longev., 2013, 1–15 (2013).

DOI: https://doi.org/10.1155/2013/218145

B. A. Freeman, J. D. Crapo, Biology of disease: free radicals and tissue injury, Lab. Invest., 47 (5), 412–426 (1982) PMID: 6290784.

https://pubmed.ncbi.nlm.nih.gov/6290784/

A. Mancini, C. D. Segni, S. Raimondo, G. Olivieri, A. Silvestrini, E. Meucci, D. Currò, Thyroid Hormones, Oxidative Stress, and Inflammation, Mediators of Inflammation, 2016, 1–5 (2016).

DOI: https://doi.org/10.1155/2016/6757154

N. Stathatos, G. H. Daniel, Autoimmune thyroid disease, Curr Opin Rheumatol., 24, 70–75 (2012).

DOI: https://doi.org/10.1097/BOR.0b013e32834ddb27

J. Huo, Q. Li, Determination of thiamazole in pharmaceutical samples by phosphorus molybdenum blue spectrophotometry, Spectrochim Acta A Mol. Biomol. Spectrosc., 87, 293–297 (2012).

DOI: https://doi.org/10.1016/j.saa.2011.11.056

P. V. Harper, G. Andros, K. Lathorp, Preliminary observations on the use of six-hour99mtc as a tracer in biology and medicine, Argon. Cance. Research Hospital., 18, 176–188 (1962).

DOI:https://digital.library.unt.edu/ark:/67531/metadc1029367/m2/1/high_res_d/4702168.pdf

R. Mikolajczak, M. Kameswaran, Yttrium-90 and rhenium-188 radiopharmaceuticals for radionuclide therapy. International Atomic Energy Agency, Vienna, Austria, 2015.

(https://www-pub.iaea.org/MTCD/Publications/PDF/ Pub1662web-89688003.pdf)

S. Vellabhajosula, Molecular Imaging: Radiopharmaceuticals for PET and SPECT, Springer, New York, 2009. DOI: https://doi.org/10.1007/978-3-540-76735-0

M. Welch, C. S. Redvanly, Handbook of radiopharmaceuticals: radiochemistry and applications, John Wiley & Sons, London, 2003 (ISBN: 978-0-471-49560-4). DOI: https://doi.org/ DOI:10.1002/0470846380

P. N. Serrano, Electrochemistry of technetium analogs rhenium and molybdenum in room temperature ionic liquid, UNLV Theses, Dissertations, Professional Papers, and Capstones, 2011.

DOI: http://dx.doi.org/10.34917/2817878

C. D. Ramos, D. E. Z. Wittmann, E. C. Sá de Camargo Etchebehere, Thyroid uptake and scintigraphy using 99mTc pertechnetate: standardization in normal individuals, Sao Paulo Med J/Rev Paul Med. 120(2), 45–48 (2002).

DOI: http://dx.doi.org/10.1590/S1516-31802002000200004

G. Gopu, P. Manisankar, B. Muralidharan, V. Chinnapiyan, Stripping Voltammetric Determination of Analgetics in Their Pharmaceuticals Using Nano-Riboflavin-Modified Glassy Carbon Electrode, Int. J. Electrochem, 1 (2011). DOI: https://doi.org/10.4061/2011/269452

C. Engin, S. Yilmaz, G. Saglikogluet, S. Yagmur, M. Sadikoglu, Electroanalytical Investigation of Paracetamol on Glassy Carbon Electrode by Voltammetry, Int. J. Electrochemical. Sci., 1917–1918 (2015).

DOI:http://www.electrochemsci.org/papers/vol10/100201916.pdf

A. A. El-Shanawany, S. M. El-Adl, D. S. El Haleem, Electrochemical Characterization and Determination of the Anticancer Drug Flutamide, Annalen der Chemschen Forshung. 2, 29–40 (2014), (ISSN 2321–1725 (E). http://aocsr.com/index.php/ct-menu-item-12/ct-menu-item-13.html)

H. M. Elqudaby, G. M. Gehad, G. M. G. El Din, Electrochemical Behaviour of Trimebutine at Activated Glassy Carbon Electrode and its Direct Determination in Urine and Pharmaceutics by Square Wave and Differential Pulse Voltammetry, International Journal of Electrochemical Science. 856–857 (2014).

http://www.electrochemsci.org/papers/vol9/90200856.pdf

B. Muralidharan, G. Gopu, C. Vedhi, P. Manisankar, Voltammetric determination of analgetics using a montmorillonite modified electrode. Applied Clay Sci. 206–207 (2007).

DOI: https://doi.org/10.1016/j.clay.2007.11.005

M. H. Sanad, Novel radiochemical and biological characterization od 99mTc-histamine as a model for brain imaging, J. Anal. Sci. and Tech. 1–2 (2014).

https://jast-journal.springeropen.com/articles/10.1186/ s40543-014-0023-4

P. Chen, R. L. McCreery, Control of Electron Transfer Kinetics at Glassy Carbon Electrodes by Specific Surface Modification, Anal. Chem. 68, 3958–3865 (1996).

DOI: https://doi.org/10.1021/ac960492r

X. Xi, L. Ming, J. Liu, Electrochemical determination of thiamazole at a multi-wall carbon nanotube modified glassy carbon electrode, Journal of Applied Electrochemistry, 40 (8), 1449–1454 (2010).

DOI: https://doi.org/10.1007/s10800-010-0122-x

R. W. Murray, Chemically modified electrodes, in Electroanalytical Chemistry, A. J. Bard (ed.), Marcel Dekker, New York, 1984, p. 191.

(https://pubmed.ncbi.nlm.nih.gov)

R. W. Murray, Introduction to the chemistry of molecularly designed electrodes, in R. W. Murray (ed.), Molecular design of electrode surfaces, techniques of chemistry series. Wiley-Interscience, New York, 1992, p.1. (https://lib.ugent.be/catalog/rug01:000267053)

A. J. Bard, L. R. Faulkner, Electrochemical Methods, 2nd edn., Wiley, New York, 2001.

(https://www.wiley.com/enir/Electrochemical+Methods:+Fundamentals+and+Applications,+2nd+Edition-p-9780471043720)

S. Pinzanti, G. Papeschi, E. LaPorta, Potentiometric titration of thiols, cationic surfactants and halides using a solid-state silver—silver sulphide electrode, J. Pharm. Biomed. Anal. 1, 47–53 (1983).

DOI: https://doi.org/10.1016/0731-7085(83)80007-7

S. Shahrokhian, M. Ghalkhani, Voltammetric Determination of Methimazole Using a Carbon Paste Electrode Modified with a Schiff Base Complex of Cobalt, Electroanalysis, 20 (10), 1061–1066 (2008).

DOI: https://doi.org/10.1002/elan.200704149

F. Jalali, Z. Hatami, Fast Electrocatalytic Determination of Methimazole at an Activated Glassy Carbon Electrode, Iranian Journal of Pharmaceutical Research. 15 (4), 735–741 (2016) PMID: 28243269.

https://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC5316251&blobtype=pdf

C. S. Cutler, C. J. Smith, G. J. Ehrhardt, T. T. Tyler, S. S. Current and Potential Therapeutic Uses of Lanthanide Radioisotopes, Cancer Biotherapy and Radiopharmaceuticals. 15 (6), 531–545 (2000).

DOI: https://doi.org/10.1089/cbr.2000.15.531

F. A. Armstrong, H. A. Heering, J. Hirst Reaction of complex metalloproteins studied by protein-film voltammetry, Chem. Soc. Rev. 26, 169–179 (1997).

DOI: https://doi.org/10.1039/CS9972600169

H. B. Gray, J. R. Winkler, Electron tunneling through proteins, Quart. Rev. Biophys. 36, 341–372 (2003).

DOI: https://doi.org/10.1017/s0033583503003913

B. Yilmaz, F. Bayrakceken Nisanci, Electrochemical study of methimazole and its direct determination in pharmaceutical preparations and human serum by square wave and differential pulse voltammetry, Journal of Pharmaceutical Research and Reviews. 1–5 (2017). DOI: https://doi.org/10.28933/jprr-2017-12-0503

P. Kara, K. Dagdeviren, M. Ozsoz, An Electrochemical DNA Biosensor for the Detection of DNA Damage Caused by Radioactive Iodine and Technetium, Turk J Chem. 31, 243 –249 (2007) 243 –249.

B. L. Lawson, S. M. Scheifers, T. C. Pinkerton, The electrochemical reduction of pertechnetate at carbon electrodes in aqueous non-complexing acid media, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 177 (1-2), 167–181 (1984).

DOI: https://doi.org/10.1016/0022-0728(84)80220-X

C. D. Russell, Carrier electrochemistry of pertechnetate: Application to radiopharmaceutical labelling by controlled potential electrolysis at chemically inert electrodes. The International Journal of Applied Radiation and Isotopes. 28(3), 241–249 (1977).

DOI: https://doi.org/10.1016/0020-708x(77)90069-2

Downloads

Published

2021-05-11

How to Cite

Herenda, S., Kazlagić, A., Hasković, E., Šćepanović, J., & Marušić, J. (2021). Effects of 99mTc on the electrochemical properties of thiamazole in vitro. Macedonian Journal of Chemistry and Chemical Engineering, 40(1), 21–28. https://doi.org/10.20450/mjcce.2021.2148

Issue

Section

Electrochemistry