(Publisher of Peer Reviewed Open Access Journals)

International Journal of Advanced Technology and Engineering Exploration (IJATEE)

ISSN (Print):2394-5443    ISSN (Online):2394-7454
Volume-9 Issue-96 November-2022
Full-Text PDF
Paper Title : Electromechanical characterisation of nano silica filled EPDM-SiR composite for high voltage insulation
Author Name : Amir Alber, Loai Nasrat, Hanafy Ismail and Medhat Hassan
Abstract :

Silicone rubber (SiR) and Ethylene propylene diene monomer (EPDM) are broadly employed polymeric materials used in high voltage (HV) insulators. Both have their advantages and disadvantages regarding to mechanical and electrical properties. One of the major advancements of a novel polymer insulator having excellent properties is blending them. The main advantage of such a process is that the intermediate properties are sometimes superior to those of either of the single components. The combination with inorganic nanofiller has been used to improve the existing properties of the blending. In this study, for SiR/EPDM composite with different blending ratios, nanofiller Silica (SiO2) with (1,3,5, and 7) Phr have been added using a two-roll mill. SiO2 was selected as the filler material since it has excellent reinforcement, outstanding dielectric characteristics, and better thermal stability. The impacts of the nanofillers on the dielectric strength and volume resistivity were investigated for assessing the electrical properties. Also, the mechanical properties like tensile strength and elongation at break were determined. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are performed. The experimental findings showed that the doping of nanofillers consistently enhanced the electrical and mechanical properties. The greatest improvement at 5 Phr of nano SiO2 for all SiR/EPDM composite samples. Additional nano-sized particle inclusion led to deteriorating electrical and mechanical properties.

Keywords : Silicone rubber, EPDM, Dielectric strength, Tensile strength, Elongation at break, Nano silica.
Cite this article : Alber A, Nasrat L, Ismail H, Hassan M. Electromechanical characterisation of nano silica filled EPDM-SiR composite for high voltage insulation. International Journal of Advanced Technology and Engineering Exploration. 2022; 9(96):1610-1627. DOI:10.19101/IJATEE.2022.10100060.
References :
[1]Rashid A, Saleem J, Amin M, Ali SM. Long-term aging characteristics of co-filled nano-silica and micro-ATH in HTV silicone rubber composite insulators. Polymers and Polymer Composites. 2021; 29(1):40-56.
[Crossref] [Google Scholar]
[2]Kamarudin N, Razak JA, Mohamad N, Norddin N, Aman A, Ismail MM, et al. Mechanical and electrical properties of silicone rubber based composite for high voltage insulator application. International Journal of Engineering and Technology. 2018; 7(3.25):452-7.
[Google Scholar]
[3]Pleşa I, Noţingher PV, Schlögl S, Sumereder C, Muhr M. Properties of polymer composites used in high-voltage applications. Polymers. 2016; 8(5):1-63.
[Crossref] [Google Scholar]
[4]Ali M, Hackam R. Effects of saline water and temperature on surface properties of HTV silicone rubber. IEEE Transactions on Dielectrics and Electrical Insulation. 2008; 15(5):1368-78.
[Crossref] [Google Scholar]
[5]Vas JV, Venkatesulu B, Thomas MJ. Tracking and erosion of silicone rubber nanocomposites under DC voltages of both polarities. IEEE Transactions on Dielectrics and Electrical Insulation. 2012; 19(1):91-8.
[Crossref] [Google Scholar]
[6]Lan L, Yao G, Wang HL, Wen XS, Liu ZX. Characteristics of corona aged nano-composite RTV and HTV silicone rubber. In annual report conference on electrical insulation and dielectric phenomena 2013 (pp. 804-8). IEEE.
[Crossref] [Google Scholar]
[7]Haddad G, Gupta RK, Wong KL. Visualization of multi-factor changes in HTV silicone rubber in response to environmental exposures. IEEE Transactions on Dielectrics and Electrical Insulation. 2014; 21(5):2190-8.
[Crossref] [Google Scholar]
[8]Kurata Y, Takano K, Sakuraba K, Hayashi M. Evaluation of EPDM rubber for high voltage insulator. In proceedings of conference on electrical insulation and dielectric phenomena 1995 (pp. 471-4). IEEE.
[Crossref] [Google Scholar]
[9]Simmons S, Shah M, Mackevich J, Chang RJ. Polymer outdoor insulating materials. part III-Silicone elastomer considerations. IEEE Electrical Insulation Magazine. 1997; 13(5):25-32.
[Crossref] [Google Scholar]
[10]Brown M. Compounding of ethylene-propylene polymers for electrical applications. IEEE Electrical Insulation Magazine. 1994; 10(1):16-22.
[Crossref] [Google Scholar]
[11]Nasrat LS, Sharkawy RM. An investigation into the electrical properties of rubber blends for insulators. In electrical insulation conference and electrical manufacturing expo 2007 (pp. 146-9). IEEE.
[Crossref] [Google Scholar]
[12]Deepalaxmi R, Balaji M, Rajini V. Particle swarm optimization based selection of optimal polymeric blend. IEEE Transactions on Dielectrics and Electrical Insulation. 2013; 20(3):922-31.
[Crossref] [Google Scholar]
[13]Ehsani M, Borsi H, Gockenbach E, Bakhsahnde GR, Morshedian J, Abedi N. Study of electrical, dynamic mechanical and surface properties of silicone-EPDM blends. In proceedings of the IEEE international conference on solid dielectrics, 2004 (pp. 431-4). IEEE.
[Crossref] [Google Scholar]
[14]Deepalaxmi R, Rajini V. Property enhancement of SiR-EPDM blend using electron beam irradiation. Journal of Electrical Engineering and Technology. 2014; 9(3):984-90.
[Crossref] [Google Scholar]
[15]Prabu RR, Usa S, Udayakumar K, Khan MA, Majeed SA. Electrical insulation characteristics of silicone and EPDM polymeric blends I. IEEE Transactions on Dielectrics and Electrical Insulation. 2007; 14(5):1207-14.
[Crossref] [Google Scholar]
[16]Li Z, Okamoto K, Ohki Y, Tanaka T. Effects of nano-filler addition on partial discharge resistance and dielectric breakdown strength of Micro-Al2O3 Epoxy composite. IEEE Transactions on Dielectrics and Electrical Insulation. 2010; 17(3):653-61.
[Crossref] [Google Scholar]
[17]Prabu RR, Usa S, Udayakumar K, Khan MA, Majeed SA. Theoretical correlations amongst electrical and mechanical characteristics of polymeric housing materials for outdoor insulators. IEEE Transactions on Dielectrics and Electrical Insulation. 2008; 15(3):771-82.
[Crossref] [Google Scholar]
[18]Pan C, Wu K, Chen G, Gao Y, Florkowski M, Lv Z, et al. Understanding partial discharge behavior from the memory effect induced by residual charges: a review. IEEE Transactions on Dielectrics and Electrical Insulation. 2020; 27(6):1951-65.
[Crossref] [Google Scholar]
[19]Lewis TJ. Interfaces: nanometric dielectrics. Journal of Physics D: Applied Physics. 2005; 38(2).
[Crossref] [Google Scholar]
[20]Tanaka T, Frechette M, Agoris DP, Campus A, Castellon J, Densley J, et al. Various dielectric characteristics of polymer nanocomposites. In international conference on large high voltage electric systems, CIGRE 2006.
[Google Scholar]
[21]Nelson JK. Dielectric polymer nanocomposites. New York, NY, USA, Springer; 2010.
[Crossref] [Google Scholar]
[22]Cigre W. D1. 24: polymer nanocomposites-fundamentals and possible applications to power sectors. Technical Brochure. 2011.
[Google Scholar]
[23]Raetzke S, Kindersberger J. Role of interphase on the resistance to high-voltage arcing, on tracking and erosion of silicone/SiO2 nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation. 2010; 17(2):607-14.
[Crossref] [Google Scholar]
[24]Balachandran M, Devanathan S, Muraleekrishnan R, Bhagawan SS. Optimizing properties of nanoclay–nitrile rubber (NBR) composites using face centred central composite design. Materials & Design. 2012; 35:854-62.
[Crossref] [Google Scholar]
[25]Tantra R. Nanomaterial characterization: an introduction. John Wiley & Sons; 2016.
[Google Scholar]
[26]Seiler J, Kindersberger J. Insight into the interphase in polymer nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation. 2014; 21(2):537-47.
[Crossref] [Google Scholar]
[27]Yu T, Zhang P, Shao Q. Broadband dielectric spectroscopy of silicone rubber nano-composites. In 11th international conference on the properties and applications of dielectric materials 2015 (pp. 796-9). IEEE.
[Crossref] [Google Scholar]
[28]Venkatesulu BY, Thomas MJ. Erosion resistance of alumina-filled silicone rubber nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation. 2010; 17(2):615-24.
[Crossref] [Google Scholar]
[29]Azizi S, Momen G, Ouellet-plamondon C, David E. Performance improvement of EPDM and EPDM/Silicone rubber composites using modified fumed silica, titanium dioxide and graphene additives. Polymer Testing. 2020.
[Crossref] [Google Scholar]
[30]Saldivar-guerrero R, Rejon L. Preparation and electrical characterization of EPDM nanocomposites by using silica nanoparticles. In international symposium on electrical insulating materials 2008 (pp. 499-501). IEEE.
[Crossref] [Google Scholar]
[31]Nazir MT, Phung BT, Zhang Y, Li S. Dielectric and thermal properties of micro/nano boron nitride co‐filled EPDM composites for high‐voltage insulation. Micro & Nano Letters. 2019; 14(2):150-3.
[Crossref] [Google Scholar]
[32]Ali M, Choudhry MA. Preparation and characterization of EPDM-silica nano/micro composites for high voltage insulation applications. Materials Science-Poland. 2015; 33(1):213-9.
[Crossref] [Google Scholar]
[33]Song PX, Zhang ZH, Wang HM, Fang SC, Yu Y, Meng ZZ, et al. Dielectric properties of EPDM/SiC composite under huge temperature gradient. In conference on electrical insulation and dielectric phenomena 2019 (pp. 503-6). IEEE.
[Crossref] [Google Scholar]
[34]Nazir MT, Phung BT, Kabir I, Yuen AC, Yeoh GH, Zhang Y, et al. Investigation on dry band arcing induced tracking failure on nanocomposites of EPDM matrix. In 2nd international conference on electrical materials and power equipment 2019 (pp. 309-12). IEEE.
[Crossref] [Google Scholar]
[35]Alqudsi AY, Ghunem RA, David E. Influence of nano sized fillers on suppressing DC erosion of hybrid silicone rubber composites. In electrical insulation conference 2021 (pp. 293-6). IEEE.
[Crossref] [Google Scholar]
[36]Ibrahim ME, Abd-elhady AM, Elmasry ES, Izzularab MA. Evaluation of electrical treeing and dielectric spectroscopy of silicone rubber nanocomposites under thermal ageing. In 22nd international middle east power systems conference 2021 (pp. 194-201). IEEE.
[Crossref] [Google Scholar]
[37]Nazir MT, Phung BT, Yu S, Li S. Resistance against AC corona discharge of micro-ATH/nano-Al2O3 co-filled silicone rubber composites. IEEE Transactions on Dielectrics and Electrical Insulation. 2018; 25(2):657-67.
[Crossref] [Google Scholar]
[38]Meyer LH, Cherney EA, Jayaram SH. The role of inorganic fillers in silicone rubber for outdoor insulation alumina tri-hydrate or silica. IEEE Electrical Insulation Magazine. 2004; 20(4):13-21.
[Crossref] [Google Scholar]
[39]Loganathan N, Muniraj C, Chandrasekar S. Tracking and erosion resistance performance investigation on nano-sized SiO2 filled silicone rubber for outdoor insulation applications. IEEE Transactions on Dielectrics and Electrical Insulation. 2014; 21(5):2172-80.
[Crossref] [Google Scholar]
[40]Khan H, Amin M, Ahmad A. Performance evaluation of alumina trihydrate and silica-filled silicone rubber composites for outdoor high-voltage insulations. Turkish Journal of Electrical Engineering and Computer Sciences. 2018; 26(5):2688-700.
[Crossref] [Google Scholar]
[41]Vijayalekshmi V, Majeed SS. Mechanical, thermal and electrical properties of EPDM/silicone blend nanocomposites. International Journal of Engineering Research and Applications. 2013; 3(2):1177-80.
[Google Scholar]
[42]Fairus M, Hafiz M, Mansor NS, Kamarol M, Jaafar M. Comparative study of SiR/EPDM containing nano-alumina and titanium dioxides in electrical surface tracking. IEEE Transactions on Dielectrics and Electrical Insulation. 2017; 24(5):2901-10.
[Crossref] [Google Scholar]
[43]Ravindran A, Kamaraj M, Vasanthmurali N, Meghavarshini V, Balachandran M. Nanosilica reinforced EPDM silicone rubber blends: experimental and theoretical evaluation of mechanical and solvent sorption properties. Materials Today: Proceedings. 2021; 46:4381-6.
[Crossref] [Google Scholar]
[44]Saleem MZ, Akbar M, Alam S. Aging assessment of corona-exposed HTV-SiR/EPDM blends loaded with nanofillers. IEEE Transactions on Plasma Science. 2021; 49(12):3897-906.
[Crossref] [Google Scholar]
[45]Vijayalakshmi S, Deeplaxmi R, Rajini V. Electro-mechanical characterization of carbon filled SiR-EPDM blends. In fifth international conference on electrical energy systems 2019 (pp. 1-5). IEEE.
[Crossref] [Google Scholar]
[46]Fairus M, Mansor NS, Hafiz M, Kamarol M, Mariatti M. Investigation on dielectric strength of alumina nanofiller with SiR/EPDM composites for HV insulator. In 11th international conference on the properties and applications of dielectric materials 2015 (pp. 923-6). IEEE.
[Crossref] [Google Scholar]
[47]Khan H, Amin M, Ali M, Iqbal M, Yasin M. Effect of micro/nano-SiO $ _ {2} $ on mechanical, thermal, and electrical properties of silicone rubber, epoxy, and EPDM composites for outdoor electrical insulations. Turkish Journal of Electrical Engineering and Computer Sciences. 2017; 25(2):1426-35.
[Crossref] [Google Scholar]
[48]Hasted JB, Ritson DM, Collie CH. Dielectric properties of aqueous ionic solutions. Parts I and II. The Journal of Chemical Physics. 1948; 16(1):1-21.
[Crossref] [Google Scholar]
[49]Harris FE, Okonski CT. Dielectric properties of aqueous ionic solutions at microwave frequencies. The journal of Physical Chemistry. 1957; 61(3):310-9.
[Crossref] [Google Scholar]
[50]Alber A, Nasrat L, Ismail H, Hassan M. The electrical and mechanical properties of EPDM -SiR composites loaded with micro silica. South Asian Research Journal of Engineering and Technology. 2022; 4(5):120-7.
[Crossref] [Google Scholar]
[51]Dang ZM, Xia YJ, Zha JW, Yuan JK, Bai J. Preparation and dielectric properties of surface modified TiO2/silicone rubber nanocomposites. Materials Letters. 2011; 65(23-24):3430-2.
[Crossref] [Google Scholar]
[52]Andritsch T, Kochetov R, Morshuis PH, Smit JJ. Dielectric properties and space charge behavior of MgO-epoxy nanocomposites. In 10th international conference on solid dielectrics 2010 (pp. 1-4). IEEE.
[Crossref] [Google Scholar]
[53]Amin S, Shaukat H, Haroon SS, Sajjad IA, Awais M. Effect of nano filler concentration on leakage current and partial discharge properties of zepoxy nano composites. SN Applied Sciences. 2019; 1(10):1-9.
[Crossref] [Google Scholar]
[54]Ishimoto K, Kanegae E, Ohki Y, Tanaka T, Sekiguchi Y, Murata Y, et al. Superiority of dielectric properties of LDPE/MgO nanocomposites over microcomposites. IEEE Transactions on Dielectrics and Electrical Insulation. 2009; 16(6):1735-42.
[Crossref] [Google Scholar]
[55]Khankrua R, Pivsa-art S, Hiroyuki H, Suttiruengwong S. Thermal and mechanical properties of biodegradable polyester/silica nanocomposites. Energy Procedia. 2013; 34:705-13.
[Crossref] [Google Scholar]
[56]Wang W, Li S. Correlation between trap parameters and breakdown strength of polyethylene/alumina nanocomposites. In proceedings of international symposium on electrical insulating materials 2014 (pp. 73-6). IEEE.
[Crossref] [Google Scholar]
[57]Roy M, Nelson JK, Maccrone RK, Schadler LS. Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics. Journal of Materials Science. 2007; 42(11):3789-99.
[Crossref] [Google Scholar]
[58]Murata Y, Sekiguchi Y, Inoue Y, Kanaoka M. Investigation of electrical phenomena of inorganic-filler/LDPE nanocomposite material. In proceedings of international symposium on electrical insulating materials, 2005 (pp. 650-3). IEEE.
[Crossref] [Google Scholar]
[59]Li S, Yin G, Chen G, Li J, Bai S, Zhong L, et al. Short-term breakdown and long-term failure in nanodielectrics: a review. IEEE Transactions on Dielectrics and Electrical Insulation. 2010; 17(5):1523-35.
[Crossref] [Google Scholar]
[60]Tanaka T. Dielectric nanocomposites with insulating properties. IEEE Transactions on Dielectrics and Electrical Insulation. 2005; 12(5):914-28.
[Crossref] [Google Scholar]
[61]Tanaka T, Kozako M, Fuse N, Ohki Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Transactions on Dielectrics and Electrical Insulation. 2005; 12(4):669-81.
[Crossref] [Google Scholar]
[62]Nelson JK, Hu Y. Nanocomposite dielectrics-properties and implications. Journal of Physics D: Applied Physics. 2005; 38(2).
[Crossref] [Google Scholar]
[63]Li S, Zhao N, Nie Y, Wang X, Chen G, Teyssedre G. Space charge characteristics of LDPE nanocomposite/LDPE insulation system. IEEE Transactions on Dielectrics and Electrical Insulation. 2015; 22(1):92-100.
[Crossref] [Google Scholar]