Agricultural Reviews

  • Chief EditorPradeep K. Sharma

  • Print ISSN 0253-1496

  • Online ISSN 0976-0741

  • NAAS Rating 4.84

Frequency :
Quarterly (March, June, September & December)
Indexing Services :
AGRICOLA, Google Scholar, CrossRef, CAB Abstracting Journals, Chemical Abstracts, Indian Science Abstracts, EBSCO Indexing Services, Index Copernicus
Agricultural Reviews, volume 42 issue 4 (december 2021) : 406-412

Genetic Relationship of Transcriptional Factor Genes in the Regulation of Cells Death in Arabidopsis: A Review

A.J. Khaskheli, L. Zhang, M.I. Khaskheli, A.A. Khaskheli, L.H. Qing
1Institute of Cell Biology and Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
Cite article:- Khaskheli A.J., Zhang L., Khaskheli M.I., Khaskheli A.A., Qing L.H. (2021). Genetic Relationship of Transcriptional Factor Genes in the Regulation of Cells Death in Arabidopsis: A Review. Agricultural Reviews. 42(4): 406-412. doi: 10.18805/ag.R-188.
The leaf yellowing is the first visible sign of senescence, which starts at the margins of the leaf and progresses to the blade. Although, transcriptional factor family genes generally encode meticulous regulators which perform a range of functions in turns regulating the physiological and developmental mechanism of plant stature. However, the genetic relationship of TFs genes in regulating the cell death of Arabidopsis is well not understood to date. TFs family in a plant regulates various developmental and stress responses in underline pathways. In our review we observed the genetic relationship of TFs genes in regulations of cell death in Arabidopsis. Given that, programmed cell death (PCD) being an active process that includes the expression of hundreds of genes. It is speculated that many TFs are involved in the core elements of the regulatory network. There are only a few factors that are being demonstrated in involving the regulation of cell death, by evaluating the leaf senescence appearances of knocking of mutants and by identifying downstream target genes. In this review, we have focused on the manifold roles of TFs during genetic relationships and the regulation of cell death in Arabidopsis. We also deliberated how the transcription factors family gene regulates the cells’ death by different hormonal stress, environmental strain and their role in retrograde signaling. For deep understanding of regulatory molecular mechanisms of cell death in the plant, future research may be hypothesized to collect appropriate evidence and a detailed study may be implemented on the upstream pathway with a specific targeted gene that recognizes the stress signals involved in cell death in plants. Also, crosstalk between mitochondria and chloroplast is mainly being focused to better understand the regulations of cell death in plants. Present review concludes that regulating the cell death of Arabidopsis is very important for meeting future global food needs, crop yields. Overexpression of ERF transcription factors genes relating cell death of Arabidopsis confers broad-spectrum resistance to pathogens and other abiotic stresses and can also make transgenic plants resistant to drought, salinity and freezing.

  1. Ahlfors, R., Lang, S., Overmyer, K., Jaspers, P., Brosche, M., Tauriainen, A., Kollist, H., Tuominen, H., Belles-Boix, E. and Piippo, M. (2004). Arabidopsis radical-induced cell death belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene and methyl jasmonate responses. Plant Cell. 16: 1925-1937. 

  2. Argueso, C.T., Ferreira, F.J. and Kieber, J.J. (2009). Environmental perception avenues: The interaction of cytokinin and environmental response pathways. Plant, Cell and Environment. 32: 1147-1160.

  3. Balazadeh, S., Kwasniewski, M., Caldana, C., Mehrnia, M., Zanor, M.I., Xue, G.P. and Mueller-Roeber, B. (2011). ORS1, an H2O2-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Molecular Plant. 4: 346-360. 

  4. Balazadeh, S., Rian Pacho, D.M. and Mueller-Roeber, B. (2008). Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biology. 10: 63-75.

  5. Bisson, M.M., Bleckmann, A., Allekotte, S. and Groth, G. (2009). EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochemistry Journal. 424: 1-6.

  6. Breeze, E., Harrison, E., McHattie, S., Hughes, L., Hickman, R. and Hill, C. (2011). High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell. 23: 873-894.

  7. Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P.O., Nam, H.G., Lin, J.F., Wu, S.H., Swidzinski, J., Ishizaki, K. and Leaver, C.J. (2005). Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant Journal. 42: 567-585.

  8. Cai, L., Zhang, X.H., Shen, H.X. and Gao, J.P. (2002). Effects of ethylene and its inhibitor on flower opening and senescence of cut roses. Acta Horticultura Sinica. 29: 467-472.

  9. Carimi, F., Zottini, M., Formentin, E., Terzi, M. and Schiavo, F. (2003). Cytokinins: new apoptotic inducers in plants. Planta. 216: 413-421.

  10. Charfeddine, M., Saidi, M.N., Charfeddine, S., Hammami, A. and Gargouri, B.R. (2015). Genome-wide analysis and expression profiling of the ERF transcription factor family in potato (Solanum tuberosum L.) Molecular Biotechnology. 57: 348-358. 

  11. Chen, M.K., Hsu, W.H., Lee, P.F., Thiruvengadam, M., Chen, H.I. and Yang, C.H. (2011). The MADS box gene, forever young flower, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. Plant Journal. 68: 168-185.

  12. Chen, W., Provart, N.J. and Glazebrook, J. (2002). Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. The Plant Cell. 14: 559-574.

  13. Fan, W., Hai, M., Guo, Y., Ding, Z., Tie, W. and Ding, X. (2016). The ERF transcription factor family in cassava: Genome-wide characterization and expression analyses against drought stress. Science. 6: 373-379. 

  14. Fendrych, M., Van, H.T., Van, D.M., Olvera-Carrillo, Y., Huysmans, M., Karimi, M., Lippens, S., Guérin, C.J., Krebs, M., Schumacher, K. and Nowack, M.K. (2014). Programmed cell death controlled by ANAC033/SOMBRERO determines root cap organ size in Arabidopsis. Current Biology. 24: 931-40.

  15. Gan, S. and Amasino, R.M. (1997). Making sense of senescence Molecular genetic regulation of leaf senescence. Plant Physiology. 113: 313-319.

  16. Gregersen, P.L. and Holm, P.B. (2007). Transcriptome analysis of senescence in the ûag leaf of wheat (Triticum aestivum L.). Plant Biotechnology Journal. 5: 192-20.

  17. Guo, B., Wei, Y., Xu, R., Lin, S., Luan, H. and Lv, C. (2016). Genome-wide analysis of APETALA2/ethylene-responsive factor (AP2/ERF) gene family in barley (Hordeum vulgare L.). PLoS ONE. 11: 1613-1622.

  18. Guo, Y, and Gan, S. (2006). AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant Journal. 46: 601-612. 

  19. Guo, Y., Cai, Z. and Gan, S. (2004). Transcriptome of Arabidopsis leaf senescence. Plant Cell Environment. 27: 521-549.

  20. He, Y., Tang, W., Swain, J.D., Green, A.L., Jack, T.P. and Gan, S. (2001). Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiology. 126: 707-716.

  21. Hee, K., Junyoung, K., Jeongsik, K., Ung, L., In-Ja, S., Jin-Hong, K., Hyo-Yeon, L., Hong Gil, N. and Pyung, O.L. (2010). The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. Journal of Experimental Botany. 61: 3947-3957.

  22. Huang, L.C., Lai, U.L., Yang, S.F., Chu, M.J., Kuo, C.I., Tsai, M.F. and Sun, C.W. (2007). Delayed flower senescence of Petunia hybrida plants transformed with antisense broccoli ACC synthase and ACC oxidase genes. Postharvest Biology and Technology. 46: 47-53. 

  23. Hye, R., Jin, H.K., Junyoung, K., Jeongsik, K., Ung, L., In-Ja, S., Jin-Hong, K., Hyo-Yeon, L., Hong, G. and Pyung, O. (2010). The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. Journal of Experimental Botany. 61: 3947-3957.

  24. Ito, J. and Fukuda, H. (2002). ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements. Plant Cell. 14: 3201-11.

  25. Jing, H.C., Schippers, J.H., Hille, J. and Dijkwel, P.P. (2005). Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. Journal of Experimental Botany. 56: 2915-2923.

  26. Jing, J. and Weiss, K.R. (2002). Interneuronal basis of the generation of related but distinct motor programs in Aplysia: Implications for current neuronal models of vertebrate intralimb coordination. Journal of Neuroscience. 22: 6228-6238. 

  27. Katja, V., Gabriele, D., Johannes, B., Christa, S., Katrin, P., Jürgen, S., Julia, C., Timo, E., Lars, M.V. and Stefan, H. (2012). Early Senescence and Cell Death in Arabidopsis saul1 Mutants Involves the PAD4-Dependent Salicylic Acid Pathway. Plant Physiology. 159: 1477-1487.

  28. Kim, J.H., Woo, H.R., Kim, J., Lim, P.O., Lee, I.C. and Choi, S.H. (2009). Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science. 323: 1053-1059.

  29. Kim, J.H., Woo, H.R., Kim, J., Lim, P.O., Lee, I.C., Choi, S.H, Hwang, D. and Nam, H.G. (2009). Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science. 323: 1053-1057.

  30. Kira, M., Veley, G.M., Elizabeth, M.F., Emma, J., Sarah, C.K. and Elizabeth, S.H. (2014). Arabidopsis MSL10 has a Regulated Cell Death Signaling Activity that is Separable from its Mechano sensitive Ion Channel Activity C W Department of Biology, Washington University, St. Louis, Missouri 63130. The Plant Cell. 26: 3115-3131.

  31. Lei, Z.P., He, D.H., Xing, H.Y., Tang, B.S. and Lu, B.X. (2016). Genome-wide comparison of AP2/ERF superfamily genes between Gossypium arboreum and G. raimondii. Genetics and Molecular Research. doi: 10.4238/gmr.15038211.

  32. Lesniewicz, K., Poręba, E., Smolarkiewicz, M., Wolff, N., Stanisławski, S. and Wojtaszek, P. (2012). Plant plasma membrane-bound staphylococcal-like DNases as a novel class of eukaryotic nucleases. BMC Plant Biology. 26: 195-223.

  33. Levey, S. and Wingler, A. (2005). Natural variation in the regulation of leaf senescence and relation to other traits in Arabidopsis. Plant, Cell and Environment. 28: 223-231.

  34. Li, M., Xu, Z., Huang, Y., Tian, C., Wang, F., and Xiong, A.S. (2015). Genome-wide analysis of AP2/ERF transcription factors in carrot (Daucus carota L.) reveals evolution and expression profiles under abiotic stress. Molecular Genetics and Genomics. 290: 2049-2061.

  35. Li, X., Li, Z., Jiang, Z., Zhao, Y., Peng, J., Jin, J., Guo, H. and Luo, J. (2011). LSD: A leaf senescence database. Nucleic Acids Research. 39: 1103-1107.

  36. Li, Z., Peng, J., Wen, X. and Guo, H. (2012). Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. Journal Integrated Plant Biology. 54: 526-539.

  37. Licausi, F., Ohme-Takagi, M. and Perata, P. (2013). APETALA2/ Ethylene Responsive Factor (AP2/ERF) transcription factors: Mediators of stress responses and developmental programs. New Phytology. 199: 639-649. 

  38. Ligang, C., Shengyuan, X., Yanli, C., Daibo, L. and Diqiu, Y. (2017). Arabidopsis WRKY45 Interacts with the DELLA Protein RGL1 to Positively Regulate Age-Triggered Leaf Senescence Moliculare, Plant. 9: 1174-1189.

  39. Lim, P.O., Kim, H.J. and Nam, H.G. (2007). Leaf senescence. Annual Review of Plant Biology. 58: 115-136.

  40. Lin, J.F. and Wu, S.H. (2004). Molecular events in senescing Arabidopsis leaves. The Plant Journal. 39: 612-628.

  41. Liu, X., Li, Z., Jiang, Z., Zhao, Y., Peng, J., Jin, J., Guo, H. and Luo, J. (2011). LSD: a leaf senescence database, Nucleic Acids Research. 39: 1103-1107. 

  42. Ma, Y., Soatto, S., Kosecka, J. and Sastry, S. S. (2012). An invitation to 3-d vision: From images to geometric models (Vol. 26). Springer Science and Business Media.

  43. Miao, Y., Laun, T., Zimmermann, P. and Zentgraf, U. (2004). Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Molecular Biology. 55: 853-867. 

  44. Mlejnek, P. and Prochazka, S. (2002). Activation of caspase-like proteases and induction of apoptosis by isopentenyladenosine in tobacco BY-2 cells. Planta. 215: 158-166.

  45. Muhammad, J., Xiangzi, Z. and Ying, M. (2017). The role of the S40 gene family in leaf senescence. International Journal of Molecular Sciences. 18: 2152-2162.

  46. Nakano, T., Suzuki, K., Fujimura, T. and Shinshi, H. (2006). Genome- wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology. 140: 411-432. 

  47. Nam, H.G. (1997). The molecular genetic analysis of leaf senescence. Current Opinion in Biotechnology. 8: 200-207.

  48. Nooden, L.D. and Penney, J.P. (2001). Correlative controls of senescence and plant death in Arabidopsis thaliana (Brassicaceae). Journal of Experimental Botany. 52(364): 2151-2162.

  49. Overmyer, K., Tuominen, H., Kettunen, R., Betz, C., Langebartels, C., Sandermann, H. and Kangasjärvi, J. (2000). Ozone-sensitive Arabidopsis RCD1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell. 12: 1849-1862.

  50. Quirino, B.F, Noh, Y.S., Himelblau, E. and Amasino, R.M. (2000). Molecular aspects of leaf senescence. Trends in Plant Science. 5: 278-282. 

  51. Robatzek, S. and Somssich, I.E. (2002). Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Development. 16: 1139-1149.

  52. Sakakibara, H. (2006). Cytokinins: activity, biosynthesis and translocation. Annual Review of Plant Biology. 57: 431-449.

  53. Sarah, J.S., Johan, T.M., William, J., Simon, R. and Stephen, C. (2015). A Novel Function for Arabidopsis CYCLASE1 in Programmed Cell Death Revealed by Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Analysis of Extracellular Matrix Proteins. Molecular and Cellular Proteomics. 14(6): 1556-1568.

  54. Song, X., Li, Y. and Hou, X. (2013). Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics. 23: 573-585. 

  55. Ulker, B., Shahid, M., Mukhtar. and Somssich, I.E. (2007). The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta. 226: 125-135. 

  56. VanDoorn, W.G. and Woltering, E.J. (2008). Physiology and molecular biology of petal senescence. Journal of Experimental Botany. 59: 453-480.

  57. Wagstaff, C., Yang, T.J., Stead., A.D, Buchanan-Wollaston, V. and Roberts, J.A. (2009). A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves. Plant Journal. 57: 690-705.

  58. Werner, T. and Schmulling, T. (2009). Cytokinin action in plant development. Current Opinion in Plant Biology. 12: 527-538. 

  59. Woo, H.R., Chung, K.M., Park, J.H., Oh, S.A., Ahn, T., Hong, S.H., Jang, S.K. and Nam, H.G. (2001). ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell. 13: 1779-1790. 

  60. Wu, L., Chen, H., Curtis, C. and Fu, Z.Q. (2014). Go in for the kill. Virulence. 5: 710-721.

  61. Wu, C., Wang, X., Wang, H., Ciais, P., Peñuelas, J., Myneni, R.B. and Ge, Q. (2018). Contrasting responses of autumn- leaf senescence to daytime and night-time warming. Nature Climate Change. 8: 1092-1096.

  62. Xu, Y. and Hanson, M.R. (2000). Programmed Cell Death during Pollination-Induced Petal Senescence in Petunia. Plant Physiology. 122: 1323-1333.

  63. Yoshida, S. (2003). Molecular regulation of leaf senescence. Current Opinion in Plant Biology. 6: 79-84.

  64. Zhonghai, Li., Jinying, P., Xing, W. and Hongwei, G. (2013). ETHYLENE-INSENSITIVE3 is a Senescence-Associated Gene That Accelerates Age-Dependent Leaf Senescence by Directly Repressing miR164 Transcription in Arabidopsis. The Plant Cell. 25: 3311-3328.

  65. Zhou, X., Jiang, Y.J. and Yu, D.Q. (2011). WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis, Molecular Cells. 31: 303-320.

  66. Zhuang, J., Zhou, X.R., Sun, C.C., Guan, B.C/, Peng, R.H. and Qiao, Y.S. (2008). Cloning and bioinformatic analyzing of transcription factor AP2/ERF-B3 subfamily genes from Brassica napus. Plant Cell. 41: 192-206. 

  67. Zottini, M., Barizza, E., Bastianelli, F., Carimi, F. and Schiavo, F. (2006). Growth and senescence of Medicago truncatula cultured cells are associated with characteristic mitochondrial morphology. New Phytologist. 172: 239-247.

Editorial Board

View all (0)