阿尔泰青河伟晶岩中电气石成分和硼同位素对伟晶岩体系演化及其与围岩相互作用的示踪

郑贝琪, 陈斌, 孙杨. 2023. 阿尔泰青河伟晶岩中电气石成分和硼同位素对伟晶岩体系演化及其与围岩相互作用的示踪. 岩石学报, 39(1): 187-204. doi: 10.18654/1000-0569/2023.01.13
引用本文: 郑贝琪, 陈斌, 孙杨. 2023. 阿尔泰青河伟晶岩中电气石成分和硼同位素对伟晶岩体系演化及其与围岩相互作用的示踪. 岩石学报, 39(1): 187-204. doi: 10.18654/1000-0569/2023.01.13
ZHENG BeiQi, CHEN Bin, SUN Yang. 2023. Tracing the evolution of the pegmatite system and its interaction with the country rocks by chemical and boron isotope compositions of tourmaline in the Qinghe pegmatite from the Chinese Altay orogen. Acta Petrologica Sinica, 39(1): 187-204. doi: 10.18654/1000-0569/2023.01.13
Citation: ZHENG BeiQi, CHEN Bin, SUN Yang. 2023. Tracing the evolution of the pegmatite system and its interaction with the country rocks by chemical and boron isotope compositions of tourmaline in the Qinghe pegmatite from the Chinese Altay orogen. Acta Petrologica Sinica, 39(1): 187-204. doi: 10.18654/1000-0569/2023.01.13

阿尔泰青河伟晶岩中电气石成分和硼同位素对伟晶岩体系演化及其与围岩相互作用的示踪

  • 基金项目:

    本文受国家自然科学基金项目(41872051)和深圳市科创委稳定支持项目(GXWD20201230110313001)联合资助

详细信息
    作者简介:

    郑贝琪, 女, 1991年生, 博士, 讲师, 岩石学专业, E-mail: Beckyzheng@sgu.edu.cn

    通讯作者: 陈斌, 男, 1964年生, 教授, 博士生导师, 岩石学专业, E-mail: chenb6@sustech.edu.cn
  • 中图分类号: P578.953;P588.131;P597.2

Tracing the evolution of the pegmatite system and its interaction with the country rocks by chemical and boron isotope compositions of tourmaline in the Qinghe pegmatite from the Chinese Altay orogen

More Information
  • 伟晶岩及其围岩蚀变带的电气石记录了伟晶岩体系的演化、流体出溶以及流体-围岩相互作用的过程。本文对阿尔泰造山带青河伟晶岩及蚀变围岩中电气石进行了系统的化学成分和硼同位素分析,以探讨伟晶岩体系的源区性质、岩浆演化、流体出溶规模等重要科学问题。根据矿物成分和结构构造不同,伟晶岩可分为边缘带、过渡带和核部带。蚀变围岩从接触带开始向外,依次出现带状蚀变围岩、细粒蚀变围岩和粗粒蚀变围岩。伟晶岩蚀变围岩电气石的形成与伟晶岩出溶流体(提供B、P等)和围岩(提供Fe、Mg)相互作用有关。电气石主、微量元素和硼同位素分析表明,所有电气石都属于碱性电气石中的铁电气石-镁电气石固溶体序列,电气石中(R1+Al)(Na+R2)-1、(Al+O)(R+OH)-1、(Na+Mg)(Al+Xvac-1、(XvacAl)(NaR2+-1、FeMg-1及MnMg-1的替代关系记录了伟晶岩岩浆逐渐富集Fe、Mn、Al,亏损Na、Mg、Ca的演化路径。结合各分带V含量和Fe3+-Al相关性,我们认为原始伟晶岩浆具低氧逸度的特征,而伟晶岩脉边缘带较高的氧逸度可能与伟晶岩浆与围岩相互作用有关。伟晶岩电气石具有比花岗岩电气石低得多的REE总量和(La/Yb)N比值,表明青河伟晶岩并不是花岗岩体系分离结晶的残余岩浆,而可能是云母片岩在中地壳角闪岩相条件下低程度部分熔融的结果。蚀变围岩电气石的硼同位素组成仅稍重于未蚀变围岩的电气石,显示青河无矿化伟晶岩演化晚期流体出溶比较有限。由于伟晶岩中的电气石硼同位素组成明显轻于围岩(云母片岩),推测云母片岩并非伟晶岩的唯一源区,而可能存在一定含量的黏土岩源区。

  • 加载中
  • 图 1 

    中亚造山带(CAOB)简图(a)、阿尔泰造山带简图(b,据Windley et al.,2002Yuan et al.,2007Lv et al.,2018)及青河地区地质简图(c)

    Figure 1. 

    Sketch geological maps of the Central Asia Orogenic Belt (CAOB) (a), the Altay orogen(b, modified after Windley et al., 2002; Yuan et al. 2007; Lv et al., 2018) and the Qinghe (c)

    图 2 

    青河伟晶岩与蚀变围岩产状及对应手标本照片

    Figure 2. 

    Occurences and hand specimen photographs of Qinghe pegmatite and altered wallrocks

    图 3 

    青河伟晶岩(a-c)和蚀变围岩(d-g)微观特征

    Figure 3. 

    Microphotographs of tourmalines in Qinghe pegmatite (a-c) and altered country rocks (d-g)

    图 4 

    青河伟晶岩和蚀变围岩中电气石分类图解

    Figure 4. 

    Classification diagrams for tourmalines based on X-site occupancy(a, Henry et al., 2011), Mg/(Mg+Fe)vs. Na/(Na+Ca)(b) and Mg/(Mg+Fe)vs. Xvac/(Na+Xvac)(c)from the Qinghe pegmatite dyke and altered wallrocks

    图 5 

    青河伟晶岩和蚀变围岩中电气石主量元素图解

    Figure 5. 

    Plots for major elements of tourmalines from the Qinghe pegmatite dyke and altered wallrocks

    图 6 

    青河伟晶岩和蚀变围岩中电气石的元素替代关系

    Figure 6. 

    Characteristics of compositions of tourmalines from the Qinghe pegmatite dyke and altered wallrocks

    图 7 

    青河伟晶岩和蚀变围岩电气石微量元素成分特征

    Figure 7. 

    Characteristics of trace elements of tourmalines from the Qinghe pegmatite and altered wallrocks

    图 8 

    青河伟晶岩及各类蚀变围岩电气石硼同位素组成

    Figure 8. 

    Histograms of boron isotope compositions of tourmalines from the Qinghe pegmatite and altered wallrocks

    图 9 

    青河伟晶岩及蚀变围岩电气石电子探针分析结果

    Figure 9. 

    EPMA analysis of tourmaline from the Qinghe pegmatite and altered wallrocks

    图 10 

    青河伟晶岩及蚀变围岩电气石代表性主微量元素图解

    Figure 10. 

    Representative major and trace element relationships of tourmaline from the Qinghe pegmatite and altered wallrocks

  •  

    Acosta-Vigil A, London D, Morgan GB and Dewers TA. 2003. Solubility of excess alumina in hydrous granitic melts in equilibrium with peraluminous minerals at 700~800℃ and 200MPa, and applications of the aluminum saturation index. Contributions to Mineralogy and Petrology, 146(1): 100-119 doi: 10.1007/s00410-003-0486-6

     

    Ayres M and Harris N. 1997. REE fractionation and Nd-isotope disequilibrium during crustal anatexis: Constraints from Himalayan leucogranites. Chemical Geology, 139(1-4): 249-269 doi: 10.1016/S0009-2541(97)00038-7

     

    Barnes EM, Weis D and Groat LA. 2012. Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada. Lithos, 132-133: 21-36 doi: 10.1016/j.lithos.2011.11.014

     

    Benard F, Moutou P and Pichavant M. 1985. Phase relations of tourmaline leucogranites and the significance of tourmaline in silicic magmas. The Journal of Geology, 93(3): 271-291 doi: 10.1086/628952

     

    BGMRX (Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region). 1993. Regional Geology and Mineral Resources of Xinjiang Uygur Autonomous Region. Beijing: Geological Publishing House, 1-841 (in Chinese)

     

    Briggs SM, Yin A, Manning CE, Chen ZL, Wang XF and Grove M. 2007. Late Paleozoic tectonic history of the Ertix Fault in the Chinese Altai and its implications for the development of the Central Asian Orogenic System. GSA Bulletin, 119(7-8): 944-960 doi: 10.1130/B26044.1

     

    Cai KD, Sun M, Yuan C, Zhao GC, Xiao WJ, Long XP and Wu FY. 2011. Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China. Lithos, 127(1-2): 261-281 doi: 10.1016/j.lithos.2011.09.001

     

    Che XD, Wu FY, Wang RC, Gerdes A, Ji WQ, Zhao ZH, Yang JH and Zhu ZY. 2015. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS. Ore Geology Reviews, 65(4): 979-989

     

    Chen B, Gu HO, Chen YJ, Sun KK and Chen W. 2018. Lithium isotope behaviour during partial melting of metapelites from the Jiangnan Orogen, South China: Implications for the origin of REE tetrad effect of F-rich granite and associated rare-metal mineralization. Chemical Geology, 483: 372-384 doi: 10.1016/j.chemgeo.2018.03.002

     

    Chen B, Huang C and Zhao H. 2020. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization. Chemical Geology, 551: 119769 doi: 10.1016/j.chemgeo.2020.119769

     

    Choo CO. 2003. Mineralogical studies on complex zoned tourmaline in diaspore nodules from the Milyang clay deposit, Korea. Geosciences Journal, 7(2): 151-156 doi: 10.1007/BF02910218

     

    Da Costa IR, Antunes IMHR and Récio C. 2021. The Mg/(Fe+Mg) ratio and the Ti and A site contents of tourmaline as promising indicators of granitic magma evolution. Journal of Iberian Geology, 47(1-2): 307-321 doi: 10.1007/s41513-020-00158-5

     

    Dong ZC, Han YG, Zhao GC, Pan F, Wang K, Huang BT and Chen JL. 2018. Zircon U-Pb ages and Hf isotopes of Paleozoic metasedimentary rocks from the Habahe Group in the Qinghe area, Chinese Altai and their tectonic implications. Gondwana Research, 61: 100-114 doi: 10.1016/j.gr.2018.05.006

     

    dos Santos Dias JC, Gonçalves L and Gonçalves CC. 2019. Contrasting oxygen fugacity of I- and S-type granites from the Araçuaí orogen, SE Brazil: An approach based on opaque mineral assemblages. Mineralogy and Petrology, 113(5): 667-686 doi: 10.1007/s00710-019-00670-2

     

    Duan ZP, Jiang SY, Su HM and Zhu XY. 2020. Tourmaline as a recorder of contrasting boron source and potential tin mineralization in the Mopanshan pluton from Inner Mongolia, northeastern China. Lithos, 354-355: 105284 doi: 10.1016/j.lithos.2019.105284

     

    Duchoslav M, Marks MAW, Drost K, McCammon C, Marschall HR, Wenzel T and Markl G. 2017. Changes in tourmaline composition during magmatic and hydrothermal processes leading to tin-ore deposition: The Cornubian Batholith, SW England. Ore Geology Reviews, 83: 215-234 doi: 10.1016/j.oregeorev.2016.11.012

     

    Ertl A, Mali H, Schuster R, Körner W, Hughes JM, Brandstätter F and Tillmanns E. 2010. Li-bearing, disordered Mg-rich tourmaline from a pegmatite-marble contact in the Austroalpine basement units (Styria, Austria). Mineralogy and Petrology, 99(1-2): 89-104 doi: 10.1007/s00710-009-0082-1

     

    Fu XF, Wang DH, Yuan LP, Liang B, Hao XF and Pan M. 2014. Achievements in the investigation and evaluation of spodumene resources at Jiajika in Sichuan, China. Geological Survey of China, 1(3): 37-43 (in Chinese with English abstract)

     

    Fuchs Y, Lagache M and Linnares J. 1998. Fe-tourmaline synthesis under different T and fO2 conditions. American Mineralogist, 83(5-6): 525-534 doi: 10.2138/am-1998-5-612

     

    Fuchsloch WC, Nex PAM and Kinnaird JA. 2018 Classification, mineralogical and geochemical variations in pegmatites of the Cape Cross-Uis pegmatite belt, Namibia. Lithos, 296-299: 79-95 doi: 10.1016/j.lithos.2017.09.030

     

    Fuertes-Fuente M, Cepedal A and Martin-Izard A. 2019. Mineralogical study of the wallrock metasomatism in barren and Li-Sn-Ta mineralized pegmatites from NW Spain (Central Galicia). The Canadian Mineralogist, 57(5): 741-743 doi: 10.3749/canmin.AB00010

     

    Gadas P, Novák M, Staněk J, Filip J and Galiová MV. 2012. Compositional evolution of zoned tourmaline crystals from pockets in common pegmatites of the Moldanubian zone, Czech Republic. The Canadian Mineralogist, 50(4): 895-912 doi: 10.3749/canmin.50.4.895

     

    Han JS, Hollings P, Jourdan F, Zeng YC and Chen HY. 2020. Inherited Eocene magmatic tourmaline captured by the Miocene Himalayan leucogranites. American Mineralogist, 105(9): 1436-1440 doi: 10.2138/am-2020-7608

     

    Harlaux M, Kouzmanov K, Gialli S, Laurent O, Rielli A, Dini A, Chauvet A, Menzies A, Kalinaj M and Fontboté L. 2020. Tourmaline as a tracer of late-magmatic to hydrothermal fluid evolution: The world-class San Rafael tin (-copper) deposit, Peru. Economic Geology, 115(8): 1665-1697 doi: 10.5382/econgeo.4762

     

    Hazarika P, Upadhyay D and Pruseth KL. 2017. Episodic tourmaline growth and re-equilibration in mica pegmatite from the Bihar mica belt, India: Major- and trace-element variations under pegmatitic and hydrothermal conditions. Geological Magazine, 154(1): 68-86 doi: 10.1017/S0016756815000916

     

    Henderson IHC and Ihlen PM. 2004. Emplacement of polygeneration pegmatites in relation to Sveco-Norwegian contractional tectonics: Examples from southern Norway. Precambrian Research, 133(3-4): 207-222 doi: 10.1016/j.precamres.2004.05.011

     

    Henry DJ and Dutrow BL. 1996. Metamorphic tourmaline and its petrologic applications. Reviews in Mineralogy and Geochemistry, 33(1): 503-557

     

    Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow BL, Uher P and Pezzotta F. 2011. Nomenclature of the tourmaline-supergroup minerals. American Mineralogist, 96(5-6): 895-913 doi: 10.2138/am.2011.3636

     

    Hou JL, Wang DH, Wang CH, Huang F, Li JK and Chen ZY. 2017. Study on the types, and metallogenic and diagenetic environment of tourmaline from the Zhongzuo pegmatite veins in Quyang County, Hebei Province. Rock and Mineral Analysis, 36(5): 529-537 (in Chinese with English abstract)

     

    Hou KJ, Li YH, Xiao YK, Liu F and Tian YR. 2010. In situ boron isotope measurements of natural geological materials by LA-MC-ICP-MS. Chinese Science Bulletin, 55(29): 3305-3311 doi: 10.1007/s11434-010-4064-9

     

    Hu DL and Jiang SY. 2020. In-situ elemental and boron isotopic variations of tourmaline from the Maogongdong deposit in the Dahutang W-Cu ore field of northern Jiangxi Province, South China: Insights into magmatic-hydrothermal evolution. Ore Geology Reviews, 122: 103502 doi: 10.1016/j.oregeorev.2020.103502

     

    Huang XY, Zhang H, Tang Y and Guan SJ. 2008. Chemical composition of tourmailines from the B-rich granite and miarolitic cavities in Yinping, Guangxi and its implications for evolution of the magmatic-hydrothermal system. Acta Mineralogica Sinica, 28(1): 25-34 (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4734.2008.01.005

     

    Huang YS, Zhang H, Lv ZH, Tang Y and Tang H. 2016. Research on emplacement depths of Permian and Triassic pegmatites in Altay, Xinjiang, China: Indications from fluid inclusions. Acta Mineralogica Sinica 36(4): 571-585 (in Chinese with English abstract)

     

    Hulsbosch N, Hertogen J, Dewaele S, André L and Muchez P. 2014. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochimica et Cosmochimica Acta, 132: 349-374 doi: 10.1016/j.gca.2014.02.006

     

    Jahns RH and Burnham CW. 1969. Experimental studies of pegmatite genesis: I. A model for the derivation and crystallization of granitic pegmatites. Economic Geology, 64(8): 843-864 doi: 10.2113/gsecongeo.64.8.843

     

    Jiang SY, Wang CL, Zhang L, Yuan F, Su HM, Zhang HX and Liu T. 2021. In situ trace element tracing and isotopic dating of pegmatite type lithium deposits: An overview. Acta Geologica Sinica, 95(10): 3017-3038 (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2021.10.006

     

    Jiang YD, Sun M, Zhao GC, Yuan C, Xiao WJ, Xia XP, Long XP and Wu FY. 2010. The ~390Ma high-T metamorphic event in the Chinese Altai: A consequence of ridge-subduction? American Journal of Science, 310(10): 1421-1452 doi: 10.2475/10.2010.08

     

    Kesler SE, Gruber PW, Medina PA, Keoleian GA, Everson MP and Wallington TJ. 2012. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geology Reviews, 48: 55-69 doi: 10.1016/j.oregeorev.2012.05.006

     

    Klemme S, Marschall HR, Jacob DE, Prowatke S and Ludwig T. 2011. Trace-element partitioning and boron isotope fractionation between white mica and tourmaline. The Canadian Mineralogist, 49(1): 165-176 doi: 10.3749/canmin.49.1.165

     

    Kontak DJ, Dostal J, Kyser TK and Archibald DA. 2002. A petrological, geochemical, isotopic and fluid -inclusion study of 370Ma pegmatite-aplite sheets, Peggys Cove, Nova Scotia, Canada. The Canadian Mineralogist, 40(5): 1249-1286 doi: 10.2113/gscanmin.40.5.1249

     

    Lee CTA, Leeman WP, Canil D and Li ZA. 2005. Similar oxygen fugacities in arc and MORB mantle source regions: Evidence from V/Sc systematics. Journal of Petrology, 46(11): 2313-2336 doi: 10.1093/petrology/egi056

     

    Li ZL, Yang XQ, Li YQ, Santosh M, Chen HL and Xiao WJ. 2014. Late Paleozoic tectono-metamorphic evolution of the Altai segment of the Central Asian Orogenic Belt: Constraints from metamorphic P-T pseudosection and zircon U-Pb dating of ultra-high-temperature granulite. Lithos, 204: 83-96 doi: 10.1016/j.lithos.2014.05.022

     

    Li ZXA and Lee CTA. 2004. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth and Planetary Science Letters, 228(3-4): 483-493 doi: 10.1016/j.epsl.2004.10.006

     

    Lin YJ, Zheng MP, Zhang YS, Xing EY, Redfern SAT, Xu JM, Zhong JA and Niu XS. 2020. Mineralogical and geochemical characteristics of Triassic lithium-rich K-bentonite deposits in Xiejiacao Section, South China. Minerals, 10(1): 69 doi: 10.3390/min10010069

     

    Liu CQ and Zhang H. 2005. The lanthanide tetrad effect in apatite from the Altay No. 3 pegmatite, Xingjiang, China: An intrinsic feature of the pegmatite magma. Chemical Geology, 214(1-2): 61-77 doi: 10.1016/j.chemgeo.2004.08.054

     

    Liu F, Zhang ZX, Li Q, Zhang C and Li C. 2014. New precise timing constraint for the Keketuohai No. 3 pegmatite in Xinjiang, China, and identification of its parental pluton. Ore Geology Reviews, 56: 209-219 doi: 10.1016/j.oregeorev.2013.08.020

     

    Liu F and Han D. 2019. Petrogenetic and tectonic implications of Triassic granitoids in the Chinese Altay: The Alaer granite example. Heliyon, 5(2): E01261 doi: 10.1016/j.heliyon.2019.e01261

     

    Liu F, Chai FM and Han D. 2019. Early Paleozoic granite in the Talate mining district, Chinese Altay, and its geological significance for the Altay Orogenic Belt. Acta Geologica Sinica, 93(6): 1721-1737 doi: 10.1111/1755-6724.13819

     

    Liu H. 2013. Geochemical study on petrogenesis of Aral granite and the Keketuohai No. 3 pegmatite vein, Altay Xinjiang. Master Degree Thesis. Kunming: Kunming University of Science and Technology, 1-60 (in Chinese with English abstract)

     

    Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 doi: 10.1016/j.chemgeo.2008.08.004

     

    London D. 1996. Granitic pegmatites. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2): 305-319 doi: 10.1017/S0263593300006702

     

    London D. 2005. Granitic pegmatites: An assessment of current concepts and directions for the future. Lithos, 80(1-4): 281-303 doi: 10.1016/j.lithos.2004.02.009

     

    London D and Morgan GB. 2012. The pegmatite puzzle. Elements, 8(4): 263-268 doi: 10.2113/gselements.8.4.263

     

    London D. 2014. A petrologic assessment of internal zonation in granitic pegmatites. Lithos, 184-187: 74-104

     

    London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349-383

     

    Long XP, Sun MH, Yuan C, Xiao WJ, Lin SF, Wu FY, Xia XP and Cai KD. 2007. Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: Implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt. Tectonics, 26(5): TC5015

     

    Longfellow KM and Swanson SE. 2011. Skeletal tourmaline, undercooling, and crystallization history of the Stone Mountain granite, Georgia, U.S.A. The Canadian Mineralogist, 49(1): 341-357 doi: 10.3749/canmin.49.1.341

     

    Lv ZH, Zhang H, Tang Y, Liu YL and Zhang X. 2018. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U-Pb age and Hf isotope. Ore Geology Reviews, 95: 161-181 doi: 10.1016/j.oregeorev.2018.02.022

     

    Lv ZH, Zhang H and Tang Y. 2021. Anatexis origin of rare metal/earth pegmatites: Evidences from the Permian pegmatites in the Chinese Altai. Lithos, 380-381: 105865 doi: 10.1016/j.lithos.2020.105865

     

    Marks MAW, Marschall HR, Schühle P, Guth A, Wenzel T, Jacob DE, Barth M and Markl G. 2013. Trace element systematics of tourmaline in pegmatitic and hydrothermal systems from the Variscan Schwarzwald (Germany): The importance of major element composition, sector zoning, and fluid or melt composition. Chemical Geology, 344: 73-90 doi: 10.1016/j.chemgeo.2013.02.025

     

    Matthews A, Putlitz B, Hamiel Y and Hervig RL. 2003. Volatile transport during the crystallization of anatectic melts: Oxygen, boron and hydrogen stable isotope study on the metamorphic complex of Naxos, Greece. Geochimica et Cosmochimica Acta, 67(17): 3145-3163 doi: 10.1016/S0016-7037(02)01168-7

     

    Meyer C, Wunder B, Meixner A, Romer RL and Heinrich W. 2008. Boron-isotope fractionation between tourmaline and fluid: An experimental re-investigation. Contributions to Mineralogy and Petrology, 156(2): 259-267 doi: 10.1007/s00410-008-0285-1

     

    Morteani G and Gaupp R. 1989. Geochemical evaluation of the tantalum potential of pegmatites. In: Möller P, Černý P and Saupé P (eds. ). Lanthanides, Tantalum and Niobium. Berlin: Springer-Verlag, 303-310

     

    Mustart DA. 1972. Phase relations in the peralkaline portion of the system Na2O-Al2O3-SiO2-H2O. Ph. D. Dissertation. Stanford: Stanford University

     

    Nabelek PI, Whittington AG and Sirbescu MLC. 2010. The role of H2O in rapid emplacement and crystallization of granite pegmatites: Resolving the paradox of large crystals in highly undercooled melts. Contributions to Mineralogy and Petrology, 160(3): 313-325 doi: 10.1007/s00410-009-0479-1

     

    Nabelek PI. 2021. Formation of metasomatic tourmalinites in reduced schists during the Black Hills Orogeny, South Dakota. American Mineralogist, 106(2): 282-289 doi: 10.2138/am-2020-7405

     

    Nguyen TA, Yang XY, Thi HV, Liu L and Lee I. 2019. Piaoac granites related W-Sn mineralization, northern Vietnam: Evidences from geochemistry, zircon geochronology and Hf isotopes. Journal of Earth Science, 30(1): 52-69 doi: 10.1007/s12583-018-0865-6

     

    Novák M, Škoda R, Gadas P, Krmíček L and Černý P. 2012. Contrasting origins of the mixed (NYF+LCT) signature in granitic pegmatites, with examples from the Moldanubian Zone, Czech Republic. The Canadian Mineralogist, 50(4): 1077-1094 doi: 10.3749/canmin.50.4.1077

     

    Ren BQ, Zhang H, Tang Y and Lv ZH. 2011. LA-ICP-MS U-Pb zircon geochronology of the Altai pegmatites and its geological significance. Acta Mineralogica Sinica, 31(3): 587-596 (in Chinese with English abstract)

     

    Rickers K, Thomas R and Heinrich W. 2006. The behavior of trace elements during the chemical evolution of the H2O-, B-, and F-rich granite-pegmatite-hydrothermal system at Ehrenfriedersdorf, Germany: A SXRF study of melt and fluid inclusions. Mineralium Deposita, 41(3): 229-245 doi: 10.1007/s00126-006-0057-7

     

    Roda-Robles E, Pesquera A, Gil-Crespo P and Torres-Ruiz J. 2012. From granite to highly evolved pegmatite: A case study of the Pinilla de Fermoselle granite-pegmatite system (Zamora, Spain). Lithos, 153: 192-207 doi: 10.1016/j.lithos.2012.04.027

     

    Shabani AAT, Sahamieh RZ and Keshavarz Z. 2013. Composition of tourmalines from Hajiabad and Dehgah area, SE Boroujerd. Geopersia, 3(2): 21-33

     

    Shaw RA, Goodenough KM, Roberts NMW, Horstwood MSA, Chenery SR and Gunn AG. 2016. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: A case study from the Lewisian Gneiss Complex of North-West Scotland. Precambrian Research, 281: 338-362 doi: 10.1016/j.precamres.2016.06.008

     

    Shearer CK, Papike JJ, Simon SB, Laul JC and Christian RP. 1984. Pegmatite/wallrock interactions, Black Hills, South Dakota: Progressive boron metasomatism adjacent to the Tip Top pegmatite. Geochimica et Cosmochimica Acta, 48(12): 2563-2579 doi: 10.1016/0016-7037(84)90306-5

     

    Shearer CK, Papike JJ, Simon SB and Laul JC. 1986. Pegmatite-wallrock interactions, Black Hills, South Dakota: Interaction between pegmatite-derived fluids and quartz-mica schist wallrock. American Mineralogist, 71(3-4): 518-539

     

    Siegel K, Wagner T, Trumbull RB, Jonsson E, Matalin G, Wälle M and Heinrich CA. 2016. Stable isotope (B, H, O) and mineral-chemistry constraints on the magmatic to hydrothermal evolution of the Varuträsk rare-element pegmatite (Northern Sweden). Chemical Geology, 421: 1-16 doi: 10.1016/j.chemgeo.2015.11.025

     

    Stilling A, Cerny P and Vanstone PJ. 2006. The Tanco pegmatite at Bernic Lake, Manitoba. XVI. Zonal and bulk compositions and their petrogenetic significance. The Canadian Mineralogist, 44(3): 599-623 doi: 10.2113/gscanmin.44.3.599

     

    Sun KK, Chen B, Deng J and Ma XH. 2018. Source of copper in the giant Shimensi W-Cu-Mo polymetallic deposit, South China: Constraints from chalcopyrite geochemistry and oxygen fugacity of ore-related granites. Ore Geology Reviews, 101: 919-935 doi: 10.1016/j.oregeorev.2018.08.029

     

    Thomas R and Davidson P. 2012. Evidence of a water-rich silica gel state during the formation of a simple pegmatite. Mineralogical Magazine, 76(7): 2785-2801 doi: 10.1180/minmag.2012.076.7.11

     

    Tong Y, Wang T, Siebel W, Hong DW and Sun M. 2012. Recognition of Early Carboniferous alkaline granite in the southern Altai orogen: Post-orogenic processes constrained by U-Pb zircon ages, Nd isotopes, and geochemical data. International Journal of Earth Sciences, 101(4): 937-950 doi: 10.1007/s00531-011-0700-0

     

    Trueman DL and Cerny P. 1982. Exploration for rare-element granitic pegmatites. In: Cerny P (ed. ). Granitic Pegmatites in Science and Industry. Mineralogical Association of Canada Short Course Handbook, 463-494

     

    Trumbull RB and Chaussidon M. 1999. Chemical and boron isotopic composition of magmatic and hydrothermal tourmalines from the Sinceni granite-pegmatite system in Swaziland. Chemical Geology, 153(1-4): 125-137 doi: 10.1016/S0009-2541(98)00155-7

     

    Trumbull RB, Beurlen H, Wiedenbeck M and Soares DR. 2013. The diversity of B-isotope variations in tourmaline from rare-element pegmatites in the Borborema Province of Brazil. Chemical Geology, 352: 47-62 doi: 10.1016/j.chemgeo.2013.05.021

     

    van Hinsberg VJ, Henry DJ and Marschall HR. 2011. Tourmaline: An ideal indicator of its host environment. The Canadian Mineralogist, 49(1): 1-16 doi: 10.3749/canmin.49.1.1

     

    Veksler IV, Thomas R and Schmidt C. 2002. Experimental evidence of three coexisting immiscible fluids in synthetic granitic pegmatite. American Mineralogist, 87(5-6): 775-779 doi: 10.2138/am-2002-5-621

     

    von Goerne G, Franz G and Wirth R. 1999. Hydrothermal synthesis of large dravite crystals by the chamber method. European Journal of Mineralogy, 11(6): 1061-1078 doi: 10.1127/ejm/11/6/1061

     

    Wang CL, Qin KZ, Zhou QF and Tang DM. 2016. Features of parental granite for the Kelumute-Jideke pegmatite field in Chinese Altay, and its explorational implications. Geological Review, 62(Suppl. ): 405-406 (in Chinese)

     

    Wang T, Tong Y, Jahn BM, Zou TR, Wang YB, Hong DW and Han BF. 2007. SHRIMP U-Pb Zircon geochronology of the Altai No. 3 Pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite. Ore Geology Reviews, 32(1-2): 325-336 doi: 10.1016/j.oregeorev.2006.10.001

     

    Wang T, Jahn BM, Kovach VP, Tong Y, Hong DW and Han BF. 2009. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos, 110(1-4): 359-372 doi: 10.1016/j.lithos.2009.02.001

     

    Watenphul A, Schlüter J, Bosi F, Skogby H, Malcherek T and Mihailova B. 2016. Influence of the octahedral cationic-site occupancies on the framework vibrations of Li-free tourmalines, with implications for estimating temperature and oxygen fugacity in host rocks. American Mineralogist, 101(11): 2554-2563 doi: 10.2138/am-2016-5820

     

    Webber KL, Simmons WB, Falster AU and Foord EE. 1999. Cooling rates and crystallization dynamics of shallow level pegmatite-aplite dikes, San Diego County, California. American Mineralogist, 84(5-6): 708-717 doi: 10.2138/am-1999-5-602

     

    White RW, Powell R and Holland TJB. 2007. Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology, 25(5): 511-527 doi: 10.1111/j.1525-1314.2007.00711.x

     

    Williams LB, Hervig RL and Hutcheon I. 2001. Boron isotope geochemistry during diagenesis: Part II. Applications to organic-rich sediments. Geochimica et Cosmochimica Acta, 65(11): 1783-1794 doi: 10.1016/S0016-7037(01)00558-0

     

    Windley BF, Kröner A, Guo JH, Qu GS, Li YY and Zhang C. 2002. Neoproterozoic to Paleozoic geology of the Altai Orogen, NW China: New zircon age data and tectonic evolution. The Journal of Geology, 110(6): 719-737 doi: 10.1086/342866

     

    Wu MK, Zhang GY, Zhang DC, Chen X and Yang B. 2021. Mineralogical and geochemical characteristics of tourmaline in Cuonadong leucogranites, southern Tibet. Mineralogy and Petrology, 41(4): 44-58 (in Chinese with English abstract)

     

    Yang SY, Jiang SY and Palmer MR. 2015. Chemical and boron isotopic compositions of tourmaline from the Nyalam leucogranites, South Tibetan Himalaya: Implication for their formation from B-rich melt to hydrothermal fluids. Chemical Geology, 419: 102-113 doi: 10.1016/j.chemgeo.2015.10.026

     

    Yang SY, Jiang SY, Mao Q, Chen ZY, Rao C, Li XL, Li WC, Yang WQ, He PL and Li X. 2022. Electron probe microanalysis in geosciences: Analytical procedures and recent advances. Atomic Spectroscopy, 43(2): 186-200, doi:10.46770/AS.2021.912

     

    Yuan C, Sun M, Xiao WJ, Li XH, Chen HL, Lin SF, Xia XP and Long XP. 2007. Accretionary orogenesis of the Chinese Altai: Insights from Paleozoic granitoids. Chemical Geology, 242(1-2): 22-39 doi: 10.1016/j.chemgeo.2007.02.013

     

    Yuan C, Sun M, Long XP, Xia XP, Xiao WJ, Li XH, Lin SF and Cai KD. 2007. Constraining the deposition time and tectonic background of the Habahe Group of the Altai. Acta Petrologica Sinica, 23(7): 1635-1644 (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0569.2007.07.009

     

    Zhang H, Lü ZH and Tang Y. 2019. Metallogeny and prospecting model as well as prospecting direction of pegmatite-type rare metal ore deposits in Altay Orogenic Belt, Xinjiang. Mineral Deposits, 38(4): 792-814 (in Chinese with English abstract)

     

    Zhang ST, Lu JJ, Zhang RQ, Liang XL, Ma DS, Li RC and Wu JW. 2021a. Tourmaline as an indicator for late-magmatic to hydrothermal fluid evolution of the Neoproterozoic Baotan tin deposit, South China. Ore Geology Reviews, 139: 104504 doi: 10.1016/j.oregeorev.2021.104504

     

    Zhang XB, Chai FM, Bao CJ and Qi DM. 2021b. Geochronology, geochemistry, and Sr-Nd-Hf isotopic compositions of granitoids from the Jia'erbasidao Fe skarn deposit in Altay, NW China: Implications for tectonic setting and mineralization. Lithos, 404-405: 106433 doi: 10.1016/j.lithos.2021.106433

     

    Zhao H, Chen B, Huang C, Bao C, Yang Q and Cao R. 2022. Geochemical and Sr-Nd-Li isotopic constraints on the genesis of the Jiajika Li-rich pegmatites, eastern Tibetan Plateau: Implications for Li mineralization. Contributions to Mineralogy and Petrology, 177(1): 4 doi: 10.1007/s00410-021-01869-3

     

    Zhao HD, Zhao KD, Palmer MR and Jiang SY. 2019. In-situ elemental and boron isotopic variations of tourmaline from the Sanfang granite, South China: Insights into magmatic-hydrothermal evolution. Chemical Geology, 504: 190-204 doi: 10.1016/j.chemgeo.2018.11.013

     

    Zhao HD, Zhao KD, Palmer MR, Jiang SY and Chen W. 2021a. Magmatic-hydrothermal mineralization processes at the Yidong tin deposit, South China: Insights from in situ chemical and boron isotope changes of tourmaline. Economic Geology, 116(7): 1625-1647

     

    Zhao KD, Zhang LH, Palmer MR, Jiang SY, Xu C, Zhao HD and Chen W. 2021b. Chemical and boron isotopic compositions of tourmaline at the Dachang Sn-polymetallic ore district in South China: Constraints on the origin and evolution of hydrothermal fluids. Mineralium Deposita, 56(8): 1589-1608

     

    Zhao Z, Yang XY, Liu QY, Lu YY, Chen SS, Sun C, Zhang ZZ, Wang H and Li S. 2021c. In-situ boron isotopic and geochemical compositions of tourmaline from the Shangbao Nb-Ta bearing monzogranite, Nanling Range: Implication for magmatic-hydrothermal evolution of Nb and Ta. Lithos, 386-387: 106010

     

    Zheng BQ, Chen B, Sun KK and Huang C. 2022. Tourmaline as a recorder of the magmatic-hydrothermal evolution in the formation of pegmatite: In-situ elemental and boron isotopic compositions of tourmaline from the Qinghe pegmatite, Chinese Altay orogen. Journal of Asian Earth Sciences, 231: 105224

     

    Zhou B, Sun YX and Kong DY. 2011. Geological features and prospecting potential of rare metallic deposits in the Dahongliutan region, Xinjiang. Acta Geologica Sichuan, 31(3): 288-292 (in Chinese with English abstract)

     

    Zhou Q, Li WC, Wang GC, Liu Z, Lai Y, Huang JH, Yan GQ and Zhang QC. 2019. Chemical and boron isotopic composition of tourmaline from the Conadong leucogranite-pegmatite system in South Tibet. Lithos, 326-327: 529-539

     

    Zhu YF, Zeng YS and Gu LB. 2006. Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, Northwest China. Journal of Asian Earth Sciences, 27(1): 61-77

     

    付小方, 侯立玮, 王登红, 袁蔺平, 梁斌, 郝雪峰, 潘蒙. 2014. 四川甘孜甲基卡锂辉石矿矿产调查评价成果. 中国地质调查, 1(3): 37-43 https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201403007.htm

     

    侯江龙, 王登红, 王成辉, 黄凡, 李建康, 陈振宇. 2017. 河北曲阳县中佐伟晶岩脉中电气石的类型和成岩成矿环境研究. 岩矿测试, 36(5): 529-537 https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201705012.htm

     

    黄小勇, 张辉, 唐勇, 管申进. 2008. 广西银屏富B花岗岩及其晶洞中电气石的化学组成特征以及对岩浆-热液演化的指示. 矿物学报, 28(1): 25-34 https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200801005.htm

     

    黄永胜, 张辉, 吕正航, 唐勇, 唐宏. 2016. 新疆阿尔泰二叠纪、三叠纪伟晶岩侵位深度研究: 来自流体包裹体的指示. 矿物学报, 36(4): 571-585 https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201604018.htm

     

    蒋少涌, 王春龙, 张璐, 袁峰, 苏慧敏, 张浩翔, 刘涛. 2021. 伟晶岩型锂矿中矿物原位微区元素和同位素示踪与定年研究进展. 地质学报, 95(10): 3017-3038 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202110006.htm

     

    刘宏. 2013. 新疆阿尔泰阿拉尔花岗岩地球化学特征及其与可可托海3号脉演化关系. 硕士学位论文. 昆明: 昆明理工大学, 1-60

     

    任宝琴, 张辉, 唐勇, 吕正航. 2011. 阿尔泰造山带伟晶岩年代学及其地质意义. 矿物学报, 31(3): 587-596 https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201103039.htm

     

    王春龙, 秦克章, 周起凤, 唐冬梅. 2016. 新疆阿尔泰柯鲁木特-吉得克伟晶岩区母体花岗岩特征及其勘查意义. 地质论评, 62(增): 405-406

     

    吴明锴, 张刚阳, 张丁川, 陈曦, 杨宾. 2021. 藏南错那洞淡色花岗岩中电气石矿物学和地球化学特征. 矿物岩石, 41(4): 45-58 https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS202104005.htm

     

    新疆维吾尔自治区地质矿产局. 1993. 新疆维吾尔自治区区域地质志. 北京: 地质出版社, 1-841

     

    袁超, 孙敏, 龙晓平, 夏小平, 肖文交, 李献华, 林寿发, 蔡克大. 2007. 阿尔泰哈巴河群的沉积时代及其构造背景. 岩石学报, 23(7): 1635-1644 http://www.ysxb.ac.cn/article/id/aps_200707155

     

    张辉, 吕正航, 唐勇. 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向. 矿床地质, 38(4): 792-814 https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904008.htm

     

    周兵, 孙义选, 孔德懿. 2011. 新疆大红柳滩地区稀有金属矿成矿地质特征及找矿前景. 四川地质学报, 31(3): 288-292 https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB201103010.htm

  • 230113郑贝琪-附表1-附表3
  • 加载中

(10)

计量
  • 文章访问数:  1403
  • PDF下载数:  208
  • 施引文献:  0
出版历程
收稿日期:  2022-06-29
修回日期:  2022-09-26
刊出日期:  2023-01-01

目录