软流圈地幔成分不均一性的研究进展与意义

刘传周, 杨阳, 刘博达, 刘通. 2022. 软流圈地幔成分不均一性的研究进展与意义. 岩石学报, 38(12): 3712-3734. doi: 10.18654/1000-0569/2022.12.11
引用本文: 刘传周, 杨阳, 刘博达, 刘通. 2022. 软流圈地幔成分不均一性的研究进展与意义. 岩石学报, 38(12): 3712-3734. doi: 10.18654/1000-0569/2022.12.11
LIU ChuanZhou, YANG AlexandraYang, LIU BoDa, LIU Tong. 2022. Compositional heterogeneity of the asthenosphere: Advancement and implications. Acta Petrologica Sinica, 38(12): 3712-3734. doi: 10.18654/1000-0569/2022.12.11
Citation: LIU ChuanZhou, YANG AlexandraYang, LIU BoDa, LIU Tong. 2022. Compositional heterogeneity of the asthenosphere: Advancement and implications. Acta Petrologica Sinica, 38(12): 3712-3734. doi: 10.18654/1000-0569/2022.12.11

软流圈地幔成分不均一性的研究进展与意义

  • 基金项目:

    本文受国家杰出青年基金项目(42025201)资助

详细信息
    作者简介:

    刘传周, 1981年生, 研究员, 博士生导师, 主要从事地幔地球化学研究, E-mail: chzliu@mail.iggcas.ac.cn

  • 中图分类号: P542.5;P595

Compositional heterogeneity of the asthenosphere: Advancement and implications

  • 软流圈通常是指位于岩石圈之下、地幔过渡带之上的地幔圈层,可以发生长期缓慢变形,从而可以在全球范围内对流。软流圈是地球上岩浆岩的重要源区,并作为重要的参考体系广泛应用于讨论地球形成演化、壳幔相互作用、地壳生长等一系列重大地质问题。根据大洋玄武岩的研究结果,软流圈地幔被普遍认为具有相对均一的地球化学组成。然而,深海橄榄岩的元素与同位素组成却显示软流圈的成分存在强烈的不均一性。大量的研究显示软流圈中广泛残存有古老的再循环地幔,其来源既包括再循环的俯冲大洋岩石圈地幔,也包括通过不同方式进入软流圈的古老克拉通地幔。蛇绿岩的研究结果表明这种不均一性也同样存在于不同地质时期的软流圈地幔。本文通过总结洋中脊玄武岩、深海橄榄岩和蛇绿岩的相关研究,揭示软流圈地幔中不均一性的组成与来源,并讨论了它们对于软流圈在洋中脊下方熔融过程的影响。

  • 加载中
  • 图 1 

    全球N-MORB、D-MORB和E-MORB平均组成(数据来自Gale et al., 2013)

    Figure 1. 

    Trace elements of global N-MORB, D-MORB and E-MORD (data from Gale et al., 2013)

    图 2 

    东太平洋洋隆MORB的(La/Sm)NεNd随纬度的变化

    Figure 2. 

    Variations of (La/Sm)N and εNd of MORB along the latitude of the East Pacific Rise

    图 3 

    全球MORB的Sr-Nd-Pb-Hf同位素相关关系图

    Figure 3. 

    Sr-Nd-Pb-Hf isotope correlations of global MORB

    图 4 

    全球深海橄榄岩与弧前橄榄岩尖晶石Cr#-橄榄石Fo (数值来源于PetDB,www.earthchem.org/petdb.)

    Figure 4. 

    Olivine Fo versus spinel Cr# values of global abyssal peridotites and forearc peridotites (data from PetDB, www.earthchem.org/petdb.)

    图 5 

    全球深海橄榄岩单斜辉石REE配分图(数值来源于PetDB,www.earthchem.org/petdb.)

    Figure 5. 

    REE patterns of clinopyroxene in global abyssal peridotites (data from PetDB, www.earthchem.org/petdb.)

    图 6 

    全球深海橄榄岩单斜辉石(Sm/Yb)N-YbN(数值来源于PetDB,www.earthchem.org/petdb.)

    Figure 6. 

    Clinopyroxene (Sm/Yb)N ratios versus YbN contents of global abyssal peridotites (data from PetDB, www.earthchem.org/petdb.)

    图 7 

    全球深海橄榄岩单斜辉石与洋中脊玄武岩Sr-Nd-Hf同位素组成(数值来源于PetDB,www.earthchem.org/petdb.)

    Figure 7. 

    Sr-Nd-Hf isotope compositions of global MORB and clinopyroxene of global abyssal peridotites (data from PetDB, www.earthchem.org/petdb.)

    图 8 

    全球深海橄榄岩与洋中脊玄武岩εNd频谱图(数值来源于PetDB,www.earthchem.org/petdb.)

    Figure 8. 

    Histogram of εNd values of global abyssal peridotites and MORB (data from PetDB, www.earthchem.org/petdb.)

    图 9 

    软流圈地幔来源橄榄岩的187Os/188Os(a)和Re亏损年龄(b)频谱图(数值来源于PetDB,www.earthchem.org/petdb.)

    Figure 9. 

    Histogram of 187Os/188Os (a) and tRD ages of global asthenosphere-derived mantle peridotites (data from PetDB, www.earthchem.org/petdb.)

    图 10 

    雅江蛇绿岩地幔橄榄岩全岩MgO-Al2O3 (a)和MgO-CaO (b)

    Figure 10. 

    Whole-rock MgO vs. Al2O3 (a) and MgO vs. CaO (b) of the mantle peridotites from the Yarlung Tsangpo ophiolites

    图 11 

    雅江蛇绿岩地幔橄榄岩的橄榄石Fo-尖晶石Cr#(a)以及尖晶石Mg#-Cr#(b)

    Figure 11. 

    Olivine Fo vs. spinel Cr# (a) and spinel Mg# vs. Cr# (b) diagrams of the mantle peridotites from the Yarlung Tsangpo ophiolites

    图 12 

    新特提斯蛇绿岩地幔橄榄岩的Re-Os同位素组成及其与深海橄榄岩的统计学对比

    Figure 12. 

    Statistical comparisons of Re-Os isotopic distributions of the Neo-Tethyan ophiolitic peridotites and abyssal peridotites

    图 13 

    蛇绿岩地幔橄榄岩的Hf-Nd同位素协变图(a)以及Lu-Hf同位素等时线(b)

    Figure 13. 

    Covariations of Nd vs. Hf isotopes (a) and Lu vs. Hf isochrons (b) of global ophiolitic mantle peridotites

    图 14 

    洋中脊地幔熔融模型(据Liu and Liang, 2019)

    Figure 14. 

    Mantle melting model for mid-ocean ridges (after Liu and Liang, 2019)

    图 15 

    不均一地幔在洋中脊下上涌并发生部分熔融的示意图(据Liu and Liang, 2017b, 2020)

    Figure 15. 

    Schematic diagram showing the pseudo-2D ridge model for melting in an upwelling chemically heterogeneous mantle (after Liu and Liang, 2017b, 2020)

    图 16 

    化学不均一体随地幔上涌的演变(据Liu and Liang, 2017b)

    Figure 16. 

    Stretching and smearing of an enriched heterogeneity in an upwelling melting column (after Liu and Liang, 2017b)

    图 17 

    Nd-Hf同位素观测和地幔熔融模拟(据Liu and Liang, 2017b)

    Figure 17. 

    Nd-Hf isotope ratios and melting models(after Liu and Liang, 2017b)

    图 18 

    洋中脊玄武岩微量元素观测和地幔熔融模拟(据Liu and Liang, 2020)

    Figure 18. 

    Variations of trace element abundances in MORB and melt inclusions (a, after Laubier et al., 2012; White and Klein, 2014) and melting models considering the size of chemical heterogeneities and melt pooling area (b, after Liu and Liang, 2020)

    表 1 

    洋中脊地幔熔融和熔体汇聚模型

    Table 1. 

    Models of partial melting and melt segregation in mantle beneath mid-ocean ridges

    观测约束 洋中脊地幔熔融和熔体汇聚模型
    洋中脊下方只有化学平衡
    熔体通道1)
    洋中脊下方有深达30km
    化学不平衡熔体通道2)
    洋中脊下方有深达60km
    化学不平衡熔体通道2)
    野外 纯橄岩脉(cm-km宽) 有,但是千米级宽度
    岩石力学
    实验
    反应渗透熔体通道
    (Reactive Infiltration)
    剪切所致熔体通道
    地球
    物理
    洋壳厚度(~6km) 符合 符合 符合
    熔体分布中心50~60km 0~10km, 很浅 30km 60km
    地球
    化学
    深海橄榄岩稀土模式3)
    (230Th/238U)=1~1.4、
    (226Ra/230Th)=1~3.6、
    二者负相关
    二者正相关 (230Th/238U)=1~1.3、
    (226Ra/230Th)=1~1.8、
    二者负相关
    (230Th/238U)=1~1.3、
    (226Ra/230Th)=1~3.5、
    二者负相关
    注:1)化学平衡熔体运输模型, 如Weatherley and Katz (2016)Keller et al. (2017)Turner et al. (2017); 2)多种熔体汇聚模式的地幔熔融模型(Liu and Liang, 2019), 运输主要依靠熔体通道网络, 熔体通道内熔体与地幔残留体化学不平衡; 3)全球深海橄榄岩单斜辉石稀土含量数据由Warren (2016)整理, 含量归一化利用CI球粒陨石
    下载: 导出CSV
  •  

    Alard O, Luguet A, Pearson NJ, Griffin WL, Lorand JP, Gannoun A, Burton KW and O'Reilly SY. 2005. In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle. Nature, 436(7053): 1005-1008 doi: 10.1038/nature03902

     

    Aldanmaz E, van Hinsbergen DJJ, Yıldız-Yüksekol Ö, Schmidt MW, McPhee PJ, Meisel T, Güçtekin A and Mason PRD. 2020. Effects of reactive dissolution of orthopyroxene in producing incompatible element depleted melts and refractory mantle residues during early fore-arc spreading: Constraints from ophiolites in eastern Mediterranean. Lithos, 360-361: 105438 doi: 10.1016/j.lithos.2020.105438

     

    Allègre CJ, Hamelin B and Dupré B. 1984. Statistical analysis of isotopic ratios in MORB: The mantle blob cluster model and the convective regime of the mantle. Earth and Planetary Science Letters, 71(1): 71-84 doi: 10.1016/0012-821X(84)90053-0

     

    Allègre CJ and Turcotte DL. 1986. Implications of a two-component marble-cake mantle. Nature, 323(6084): 123-127 doi: 10.1038/323123a0

     

    Arevalo R Jr and McDonough WF. 2010. Chemical variations and regional diversity observed in MORB. Chemical Geology, 271(1-2): 70-85 doi: 10.1016/j.chemgeo.2009.12.013

     

    Arndt NT and Goldstein SL. 1989. An open boundary between lower continental crust and mantle: Its role in crust formation and crustal recycling. Tectonophysics, 161(3-4): 201-212 doi: 10.1016/0040-1951(89)90154-6

     

    Asimow PD and Langmuir CH. 2003. The importance of water to oceanic mantle melting regimes. Nature, 421(6925): 815-820 doi: 10.1038/nature01429

     

    Asimow PD, Dixon JE and Langmuir CH. 2004. A hydrous melting and fractionation model for mid-ocean ridge basalts: Application to the Mid-Atlantic Ridge near the Azores. Geochemistry, Geophysics, Geosystems, 5(1): Q01E16

     

    Birner SK, Warren JM, Cottrell E, Davis FA, Kelley KA and Falloon TJ. 2017. Forearc peridotites from Tonga record heterogeneous oxidation of the mantle following subduction initiation. Journal of Petrology, 58(9): 1755-1780 doi: 10.1093/petrology/egx072

     

    Bizimis M, Salters VJM and Bonatti E. 2000. Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs. Chemical Geology, 165(1-2): 67-85

     

    Bizimis M, Griselin M, Lassiter JC, Salters VJM and Sen G. 2007. Ancient recycled mantle lithosphere in the Hawaiian plume: Osmium-Hafnium isotopic evidence from peridotite mantle xenoliths. Earth and Planetary Science Letters, 257(1-2): 259-273 doi: 10.1016/j.epsl.2007.02.036

     

    Bo T, Katz RF, Shorttle O and Rudge JF. 2018. The melting column as a filter of mantle trace-element heterogeneity. Geochemistry, Geophysics, Geosystems, 19(12): 4694-4721 doi: 10.1029/2018GC007880

     

    Bodinier JL and Godard M. 2014. Orogenic, ophiolitic, and abyssal peridotites. In: Holland HD and Turekian KK (eds. ). Treatise on Geochemistry. 2nd Edition. Oxford: Elsevier, 3: 103-167

     

    Boudier F and Coleman RG. 1981. Cross section through the peridotite in the Samail ophiolite, southeastern Oman Mountains. Journal of Geophysical Research: Solid Earth, 86(B4): 2573-2592 doi: 10.1029/JB086iB04p02573

     

    Brandon AD, Snow JE, Walker RJ, Morgan JW and Mock TD. 2000. 190Pt-186Os and 187Re-187Os systematics of abyssal peridotites. Earth and Planetary Science Letters, 177(3-4): 319-335 doi: 10.1016/S0012-821X(00)00044-3

     

    Braun MG and Kelemen PB. 2002. Dunite distribution in the Oman Ophiolite: Implications for melt flux through porous dunite conduits. Geochemistry, Geophysics, Geosystems, 3(11): 1-21

     

    Brunelli D, Seyler M, Cipriani A, Ottolini L and Bonatti E. 2006. Discontinuous melt extraction and weak refertilization of mantle peridotites at the Vema lithospheric section (Mid-Atlantic Ridge). Journal of Petrology, 47(4): 745-771 doi: 10.1093/petrology/egi092

     

    Büchl A, Brügmann G, Batanova VG, Münker C and Hofmann AW. 2002. Melt percolation monitored by Os isotopes and HSE abundances: A case study from the mantle section of the Troodos Ophiolite. Earth and Planetary Science Letters, 204(3-4): 385-402 doi: 10.1016/S0012-821X(02)00977-9

     

    Büchl A, Brügmann GE, Batanova VG and Hofmann AW. 2004. Os mobilization during melt percolation: The evolution of Os isotope heterogeneities in the mantle sequence of the troodos ophiolite, Cyprus. Geochimica et Cosmochimica Acta, 68(16): 3397-3408 doi: 10.1016/j.gca.2004.02.005

     

    Cai Y, Yang AY, Goldstein SL, Langmuir CH, Michael PJ, Cochran JR, Zhang WF, Wang D and Bolge L. 2021. Multi-stage melting of enriched mantle components along the eastern Gakkel Ridge. Chemical Geology, 586: 120594 doi: 10.1016/j.chemgeo.2021.120594

     

    Cannat M. 1993. Emplacement of mantle rocks in the seafloor at mid-ocean ridges. Journal of Geophysical Research: Solid Earth, 98(B3): 4163-4172 doi: 10.1029/92JB02221

     

    Cannat M, Mevel C, Maia M, Deplus C, Durand C, Gente P, Agrinier P, Belarouchi A, Dubuisson G, Humler E and Reynolds J. 1995. Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°~24°N). Geology, 23(1): 49-52 doi: 10.1130/0091-7613(1995)023<0049:TCUEAR>2.3.CO;2

     

    Castillo P. 1988. The DUPAL anomaly as a trace of the upwelling lower mantle. Nature, 336(6200): 667-670 doi: 10.1038/336667a0

     

    Chauvel C and Blichert-Toft J. 2001. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planetary Science Letters, 190(3-4): 137-151 doi: 10.1016/S0012-821X(01)00379-X

     

    Chen C, Su BX, Xiao Y, Uysal I, Lin W, Chu Y, Jing JJ and Sakyi PA. 2020. Highly siderophile elements and Os isotope constraints on the genesis of peridotites from the Kızıldagophiolite, southern Turkey. Lithos, 368-369: 105583 doi: 10.1016/j.lithos.2020.105583

     

    Class C and Le Roex A. 2011. South Atlantic DUPAL anomaly: Dynamic and compositional evidence against a recent shallow origin. Earth and Planetary Science Letters, 305(1-2): 92-102 doi: 10.1016/j.epsl.2011.02.036

     

    Dai JG, Wang CS, Polat A, Santosh M, Li YL and Ge YK. 2013. Rapid forearc spreading between 130 and 120 Ma: Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet. Lithos, 172-173: 1-16 doi: 10.1016/j.lithos.2013.03.011

     

    Dasgupta R and Hirschmann MM. 2006. Melting in the Earth's deep upper mantle caused by carbon dioxide. Nature, 440(7084): 659-662 doi: 10.1038/nature04612

     

    Day JMD, Walker RJ and Warren JM. 2017. 186Os-187Os and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys. Geochimica et Cosmochimica Acta, 200: 232-254 doi: 10.1016/j.gca.2016.12.013

     

    DePaolo DJ. 1996. High-frequency isotopic variations in the Mauna Kea tholeiitic basalt sequence: Melt zone dispersivity and chromatography. Journal of Geophysical Research: Solid Earth, 101(B5): 11855-11864 doi: 10.1029/95JB03494

     

    Dick HJB. 1989. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In: Saunders AD and Norry MJ (eds. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publications: 71-105

     

    Dick HJB and Natland JH. 1996. Late-stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. In: Mével C, Gillis KM, Allan JF and Meyer PS (eds. ). Proceeding of Ocean Drilling Project, Science Results. College Station, TX: Ocean Drilling Program, 147: 103-134

     

    Dick HJB, Lin J and Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405-412 doi: 10.1038/nature02128

     

    Dilek Y and Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123(3-4): 387-411 doi: 10.1130/B30446.1

     

    Dilek Y and Furnes H. 2014. Ophiolites and their origins. Elements, 10(2): 93-100 doi: 10.2113/gselements.10.2.93

     

    Donnelly KE, Goldstein SL, Langmuir CH and Spiegelman M. 2004. Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth and Planetary Science Letters, 226(3-4): 347-366 doi: 10.1016/j.epsl.2004.07.019

     

    Dubois-Côté V, Hébert R, Dupuis C, Wang CS, Li YL and Dostal J. 2005. Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet. Chemical Geology, 214(3-4): 265-286 doi: 10.1016/j.chemgeo.2004.10.004

     

    Dupré B and Allègre CJ. 1983. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature, 303(5913): 142-146 doi: 10.1038/303142a0

     

    Dupuis C, Hébert R, Dubois-Côté V, Guilmette C, Wang CS, Li YL and Li ZJ. 2005. The Yarlung Zangbo Suture Zone ophiolitic mélange (southern Tibet): New insights from geochemistry of ultramafic rocks. Journal of Asian Earth Sciences, 25(6): 937-960 doi: 10.1016/j.jseaes.2004.09.004

     

    Elkins LJ, Sims KWW, Prytulak J, Blichert-Toft J, Elliott T, Blusztajn J, Fretzdorff S, Reagan M, Haase K, Humphris S and Schilling JG. 2014. Melt generation beneath Arctic Ridges: Implications from U decay series disequilibria in the Mohns, Knipovich, and Gakkel Ridges. Geochimica et Cosmochimica Acta, 127: 140-170 doi: 10.1016/j.gca.2013.11.031

     

    Escrig S, Capmas F, Dupré B and Allègre CJ. 2004. Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts. Nature, 431(7004): 59-63 doi: 10.1038/nature02904

     

    Gale A, Dalton CA, Langmuir CH, Su YJ and Schilling JG. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3): 489-518 doi: 10.1029/2012GC004334

     

    Goldstein SL, Soffer G, Langmuir CH, Lehnert KA, Graham DW and Michael PJ. 2008. Origin of a 'Southern Hemisphere' geochemical signature in the Arctic upper mantle. Nature, 453(7191): 89-93 doi: 10.1038/nature06919

     

    Gong XH, Shi RD, Griffin WL, Huang QS, Xiong Q, Chen SS, Zhang M and O'Reilly SY. 2016. Recycling of ancient subduction-modified mantle domains in the Purang ophiolite (southwestern Tibet). Lithos, 262: 11-26 doi: 10.1016/j.lithos.2016.06.025

     

    Göpel C, Allègre CJ and Xu RH. 1984. Lead isotopic study of the Xigaze ophiolite (Tibet): The problem of the relationship between magmatites (gabbros, dolerites, lavas) and tectonites (harzburgites). Earth and Planetary Science Letters, 69(2): 301-310 doi: 10.1016/0012-821X(84)90189-4

     

    Griffin WL, Afonso JC, Belousova EA, Gain SE, Gong XH, González-Jiménez JM, Howell D, Huang JX, Mcgowan N, Pearson NJ, Satsukawa T, Shi R, Williams P, Xiong Q, Yang JS, Zhang M and O'Reilly SY. 2016. Mantle recycling: Transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. Journal of Petrology, 57(4): 655-684 doi: 10.1093/petrology/egw011

     

    Grove TL, Kinzler RJ and Bryan WB. 1992. Fractionation of mid-ocean ridge basalt (MORB). In: Morgan JP, Blackman DK and Sinton JM (eds. ). Mantle Flow and Melt Generation at Mid-ocean Ridges. Washington, DC: American Geophysical Union, 71: 281-310

     

    Halliday AN, Lee DC, Tommasini S, Davies GR, Paslick CR, Fitton JG and James DE. 1995. Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth and Planetary Science Letters, 133(3-4): 379-395 doi: 10.1016/0012-821X(95)00097-V

     

    Hanan BB, Blichert-Toft J, Pyle DG and Christie DM. 2004. Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge. Nature, 432(7013): 91-94 doi: 10.1038/nature03026

     

    Hanghøj K, Kelemen PB, Hassler D and Godard M. 2010. Composition and genesis of depleted mantle peridotites from the Wadi Tayin Massif, Oman ophiolite: Major and trace element geochemistry, and Os isotope and PGE systematics. Journal of Petrology, 51(1-2): 201-227 doi: 10.1093/petrology/egp077

     

    Hart SR. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309(5971): 753-757 doi: 10.1038/309753a0

     

    Hart SR. 1988. Heterogeneous mantle domains: Signatures, genesis and mixing chronologies. Earth and Planetary Science Letters, 90(3): 273-296 doi: 10.1016/0012-821X(88)90131-8

     

    Hart SR. 1993. Equilibration during mantle melting: A fractal tree model. Proceedings of the National Academy of Sciences of the United States of America, 90(24): 11914-11918 doi: 10.1073/pnas.90.24.11914

     

    Harvey J, Gannoun A, Burton KW, Rogers NW, Alard O and Parkinson IJ. 2006. Ancient melt extraction from the oceanic upper mantle revealed by Re-Os isotopes in abyssal peridotites from the Mid-Atlantic ridge. Earth and Planetary Science Letters, 244(3-4): 606-621 doi: 10.1016/j.epsl.2006.02.031

     

    Hawkesworth CJ, Mantovani MSM, Taylor PN and Palacz Z. 1986. Evidence from the Parana of South Brazil for a continental contribution to DUPAL basalts. Nature, 322(6077): 356-359 doi: 10.1038/322356a0

     

    Hebert LB and Montési LGJ. 2010. Generation of permeability barriers during melt extraction at mid-ocean ridges. Geochemistry, Geophysics, Geosystems, 11(12): Q12008, doi: 10.1029/2010GC003270

     

    Hébert R, Bezard R, Guilmette C, Dostal J, Wang CS and Liu ZF. 2012. The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys. Gondwana Research, 22(2): 377-397 doi: 10.1016/j.gr.2011.10.013

     

    Hellebrand E, Snow JE, Hoppe P and Hofmann AW. 2002a. Garnet-field melting and late-stage refertilization in 'residual' abyssal peridotites from the central Indian Ridge. Journal of Petrology, 43(12): 2305-2338 doi: 10.1093/petrology/43.12.2305

     

    Hellebrand E, Snow JE and Mühe R. 2002b. Mantle melting beneath Gakkel Ridge (Arctic Ocean): Abyssal peridotite spinel compositions. Chemical Geology, 182(2-4): 227-235 doi: 10.1016/S0009-2541(01)00291-1

     

    Herzberg C. 2004. Geodynamic information in peridotite petrology. Journal of Petrology, 45(12): 2507-2530 doi: 10.1093/petrology/egh039

     

    Hirschmann MM. 2018. Comparative deep Earth volatile cycles: The case for C recycling from exosphere/mantle fractionation of major (H2O, C, N) volatiles and from H2O/Ce, CO2/Ba, and CO2/Nb exosphere ratios. Earth and Planetary Science Letters, 502: 262-273 doi: 10.1016/j.epsl.2018.08.023

     

    Hofmann AW and White WM. 1982. Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters, 57(2): 421-436 doi: 10.1016/0012-821X(82)90161-3

     

    Hofmann AW. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297-314 doi: 10.1016/0012-821X(88)90132-X

     

    Hofmann AW. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385(6613): 219-229 doi: 10.1038/385219a0

     

    Hofmann AW. 2014. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. In: Holland HD and Turekian KK (Eds. ). Treatise on Geochemistry. 2nd Edition. Oxford: Elsevier, 3: 67-101

     

    Ito G and Mahoney JJ. 2005a. Flow and melting of a heterogeneous mantle: 1. Method and importance to the geochemistry of ocean island and mid-ocean ridge basalts. Earth and Planetary Science Letters, 230(1-2): 29-46 doi: 10.1016/j.epsl.2004.10.035

     

    Ito G and Mahoney JJ. 2005b. Flow and melting of a heterogeneous mantle: 2. Implications for a chemically nonlayered mantle. Earth and Planetary Science Letters, 230(1-2): 47-63 doi: 10.1016/j.epsl.2004.10.034

     

    Iwamori H. 1993. A model for disequilibrium mantle melting incorporating melt transport by porous and channel flows. Nature, 366(6457): 734-737 doi: 10.1038/366734a0

     

    Janney PE, Le Roex AP and Carlson RW. 2005. Hafnium isotope and trace element constraints on the nature of mantle heterogeneity beneath the central Southwest Indian Ridge (13°E to 47°E). Journal of Petrology, 46(12): 2427-2464 doi: 10.1093/petrology/egi060

     

    Johnson KTM, Dick HJB and Shimizu N. 1990. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research: Solid Earth, 95(B3): 2661-2678 doi: 10.1029/JB095iB03p02661

     

    Johnson KTM and Dick HJB. 1992. Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis Ⅱ Fracture Zone. Journal of Geophysical Research: Solid Earth, 97(B6): 9219-9241 doi: 10.1029/92JB00701

     

    Kamenetsky VS, Maas R, Sushchevskaya NM, Norman MD, Cartwright I and Peyve AA. 2001. Remnants of Gondwanan continental lithosphere in oceanic upper mantle: Evidence from the South Atlantic Ridge. Geology, 29(3): 243-263 doi: 10.1130/0091-7613(2001)029<0243:ROGCLI>2.0.CO;2

     

    Katz RF, Spiegelman M and Holtzman B. 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature, 442(7103): 676-679 doi: 10.1038/nature05039

     

    Kelemen PB and Dick HJB. 1995. Focused melt flow and localized deformation in the upper mantle: Juxtaposition of replacive dunite and ductile shear zones in the Josephine peridotite, SW Oregon. Journal of Geophysical Research: Solid Earth, 100(B1): 423-438 doi: 10.1029/94JB02063

     

    Keller T, Katz RF and Hirschmann MM. 2017. Volatiles beneath mid-ocean ridges: Deep melting, channelised transport, focusing, and metasomatism. Earth and Planetary Science Letters, 464: 55-68 doi: 10.1016/j.epsl.2017.02.006

     

    Kempton PD, Pearce JA, Barry TL, Fitton JG, Langmuir C and Christie DM. 2002. Sr-Nd-Pb-Hf isotope results from ODP Leg 187: Evidence for mantle dynamics of the Australian-Antarctic Discordance and origin of the Indian MORB source. Geochemistry, Geophysics, Geosystems, 3(12): 1-35

     

    Key K, Constable S, Liu LJ and Pommier A. 2013. Electrical image of passive mantle upwelling beneath the northern East Pacific Rise. Nature, 495(7442): 499-502 doi: 10.1038/nature11932

     

    Klein EM and Langmuir CH. 1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research: Solid Earth, 92(B8): 8089-8115 doi: 10.1029/JB092iB08p08089

     

    Lambart S, Koornneef JM, Millet MA, Davies GR, Cook M and Lissenberg CJ. 2019. Highly heterogeneous depleted mantle recorded in the lower oceanic crust. Nature Geoscience, 12(6): 482-486 doi: 10.1038/s41561-019-0368-9

     

    Lange AE, Nielsen RL, Tepley FJ Ⅲ and Kent AJR. 2013. Diverse Sr isotope signatures preserved in mid-oceanic-ridge basalt plagioclase. Geology, 41(2): 279-282 doi: 10.1130/G33739.1

     

    Langmuir CH, Vocke RD Jr, Hanson GN and Hart SR. 1978. A general mixing equation with applications to Icelandic basalts. Earth and Planetary Science Letters, 37(3): 380-392 doi: 10.1016/0012-821X(78)90053-5

     

    Langmuir CH, Bender JF and Batiza R. 1986. Petrological and tectonic segmentation of the East Pacific Rise, 5°30'~14°30'N. Nature, 322(6078): 422-429 doi: 10.1038/322422a0

     

    Langmuir CH, Klein EM and Plank T. 1992. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. In: Morgan JP, Blackman DK and Sinton JM (eds. ). Mantle Flow and Melt Generation at Mid-Ocean Ridges. Washington, DC: AGU, 71: 183-280

     

    Lassiter JC, Byerly BL, Snow JE and Hellebrand E. 2014. Constraints from Os-isotope variations on the origin of Lena Trough abyssal peridotites and implications for the composition and evolution of the depleted upper mantle. Earth and Planetary Science Letters, 403: 178-187 doi: 10.1016/j.epsl.2014.05.033

     

    Laubier M, Gale A and Langmuir CH. 2012. Melting and crustal processes at the FAMOUS segment (Mid-Atlantic Ridge): New insights from olivine-hosted melt inclusions from multiple samples. Journal of Petrology, 53(4): 665-698 doi: 10.1093/petrology/egr075

     

    Le Roex AP, Dick HJB, Reid AM, Frey FA, Erlank AJ and Hart SR. 1985. Petrology and geochemistry of basalts from the American-Antarctic Ridge, Southern Ocean: Implications for the westward influence of the Bouvet mantle plume. Contributions to Mineralogy and Petrology, 90(4): 367-380 doi: 10.1007/BF00384715

     

    Le Roex AP, Dick HJB and Fisher RL. 1989. Petrology and geochemistry of MORB from 25°E to 46°E along the Southwest Indian Ridge: Evidence for contrasting styles of mantle enrichment. Journal of Petrology, 30(4): 947-986 doi: 10.1093/petrology/30.4.947

     

    Le Roux PJ, Le Roex AP, Schilling JG, Shimizu N, Perkins WW and Pearce NJG. 2002. Mantle heterogeneity beneath the southern Mid-Atlantic Ridge: Trace element evidence for contamination of ambient asthenospheric mantle. Earth and Planetary Science Letters, 203(1): 479-498 doi: 10.1016/S0012-821X(02)00832-4

     

    Liang Y. 2008. Simple models for dynamic melting in an upwelling heterogeneous mantle column: Analytical solutions. Geochimica et Cosmochimica Acta, 72(15): 3804-3821 doi: 10.1016/j.gca.2008.05.050

     

    Liang Y and Liu BD. 2016. Simple models for disequilibrium fractional melting and batch melting with application to REE fractionation in abyssal peridotites. Geochimica et Cosmochimica Acta, 173: 181-197 doi: 10.1016/j.gca.2015.10.020

     

    Liang Y and Liu BD. 2018. Stretching chemical heterogeneities by melt migration in an upwelling mantle: An analysis based on time-dependent batch and fractional melting models. Earth and Planetary Science Letters, 498: 275-287 doi: 10.1016/j.epsl.2018.06.042

     

    Liang Y. 2020. Trace element fractionation and isotope ratio variation during melting of a spatially distributed and lithologically heterogeneous mantle. Earth and Planetary Science Letters, 552: 116594 doi: 10.1016/j.epsl.2020.116594

     

    Liu BD and Liang Y. 2017a. An introduction of Markov chain Monte Carlo method to geochemical inverse problems: Reading melting parameters from REE abundances in abyssal peridotites. Geochimica et Cosmochimica Acta, 203: 216-234 doi: 10.1016/j.gca.2016.12.040

     

    Liu BD and Liang Y. 2017b. The prevalence of kilometer-scale heterogeneity in the source region of MORB upper mantle. Science Advances, 3(11): e1701872 doi: 10.1126/sciadv.1701872

     

    Liu BD and Liang Y. 2019. Importance of permeability and deep channel network on the distribution of melt, fractionation of REE in abyssal peridotites, and U-series disequilibria in basalts beneath mid-ocean ridges: A numerical study using a 2D double-porosity model. Earth and Planetary Science Letters, 528: 115788 doi: 10.1016/j.epsl.2019.115788

     

    Liu BD and Liang Y. 2020. Importance of the size and distribution of chemical heterogeneities in the mantle source to the variations of isotope ratios and trace element abundances in mid-ocean ridge basalts. Geochimica et Cosmochimica Acta, 268: 383-404 doi: 10.1016/j.gca.2019.10.013

     

    Liu CZ, Snow JE, Hellebrand E, Brügmann G, Von Der Handt A, Büchl A and Hofmann AW. 2008. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean. Nature, 452(7185): 311-316 doi: 10.1038/nature06688

     

    Liu CZ, Wu FY, Wilde SA, Yu LJ and Li JL. 2010. Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism. Lithos, 114(3-4): 413-422 doi: 10.1016/j.lithos.2009.10.008

     

    Liu CZ, Wu FY, Chu ZY, Ji WQ, Yu LJ and Li JL. 2012. Preservation of ancient Os isotope signatures in the Yungbwa ophiolite (southwestern Tibet) after subduction modification. Journal of Asian Earth Sciences, 53: 38-50 doi: 10.1016/j.jseaes.2011.08.010

     

    Liu CZ, Zhang C, Yang LY, Zhang LL, Ji WQ and Wu FY. 2014. Formation of gabbronorites in the Purang ophiolite (SW Tibet) through melting of hydrothermally altered mantle along a detachment fault. Lithos, 205: 127-141 doi: 10.1016/j.lithos.2014.06.019

     

    Liu CZ, Zhang C, Xu Y, Wang JG, Chen Y, Guo S, Wu FY and Sein K. 2016a. Petrology and geochemistry of mantle peridotites from the Kalaymyo and Myitkyina ophiolites (Myanmar): Implications for tectonic settings. Lithos, 264: 495-508 doi: 10.1016/j.lithos.2016.09.013

     

    Liu CZ, Dick HJB, Mitchell RN, Wei W, Zhang ZY, Hofmann AW, Yang JF and Li Y. 2022a. Archean cratonic mantle recycled at a mid-ocean ridge. Science Advances, 8(22): eabn6749 doi: 10.1126/sciadv.abn6749

     

    Liu CZ, Wu FY, Liu T, Zhang C, Zhang WQ, Zhang ZY, Zhang Z, Wei W and Lin YZ. 2022b. An origin of ultraslow spreading ridges for the Yarlung-Tsangpo ophiolites. Fundamental Research, 2(1): 74-83 doi: 10.1016/j.fmre.2021.07.002

     

    Liu J, Tao CH, Zhou JP, Shimizu K, Li W, Liang J, Liao SL, Kuritani T, Deloule E, Ushikubo T, Nakagawa M, Yang WF, Zhang GY, Liu YL, Zhu CW, Sun H and Zhou JJ. 2022c. Water enrichment in the mid-ocean ridge by recycling of mantle wedge residue. Earth and Planetary Science Letters, 584: 117455 doi: 10.1016/j.epsl.2022.117455

     

    Liu T, Wu FY, Zhang LL, Zhai QG, Liu CZ, Ji WB, Zhang C and Xu Y. 2016b. Zircon U-Pb geochronological constraints on rapid exhumation of the mantle peridotite of the Xigaze ophiolite, southern Tibet. Chemical Geology, 443: 67-86 doi: 10.1016/j.chemgeo.2016.09.015

     

    Liu T, Wu FY, Liu CZ, Zhang C, Ji WB and Xu Y. 2019. Reconsideration of Neo-Tethys evolution constrained from the nature of the Dazhuqu ophiolitic mantle, southern Tibet. Contributions to Mineralogy and Petrology, 174(3): 23 doi: 10.1007/s00410-019-1557-7

     

    Liu T, Wu FY, Liu CZ, Eyuboglu Y, Zhu DC, Zhang C, Ji WB, Xu Y and Zhang ZY. 2020. Testing oceanic crust-mantle decoupling by Sr-Nd-Hf-Os isotopes of Neo-Tethyan ophiolites. Lithos, 376-377: 105757 doi: 10.1016/j.lithos.2020.105757

     

    Liu T, Wu FY, Liu CZ, Zhu DC and Lin YZ. 2021. Recycling of ancient sub-oceanic mantle in the Neo-Tethyan asthenosphere: Evidence from major and trace elements and Hf-Os isotopes of the Kop Mountain ophiolite, NE Turkey. Geochimica et Cosmochimica Acta, 311: 43-58 doi: 10.1016/j.gca.2021.08.003

     

    Lundstrom CC. 2000. Rapid diffusive infiltration of sodium into partially molten peridotite. Nature, 403(6769): 527-530 doi: 10.1038/35000546

     

    Mahoney J, Le Roex AP, Peng Z, Fisher RL and Natland JH. 1992. Southwestern limits of Indian ocean ridge mantle and the origin of low 206Pb/204Pb Mid-ocean ridge basalt: Isotope systematics of the Central Southwest Indian Ridge (17°~50°E). Journal of Geophysical Research: Solid Earth, 97(B13): 19771-19790 doi: 10.1029/92JB01424

     

    Mahoney JJ, Natland JH, White WM, Poreda R, Bloomer SH, Fisher RL and Baxter AN. 1989. Isotopic and geochemical provinces of the western Indian Ocean spreading centers. Journal of Geophysical Research: Solid Earth, 94(B4): 4033-4052 doi: 10.1029/JB094iB04p04033

     

    Mallick S, Dick HJB, Sachi-Kocher A and Salters VJM. 2014. Isotope and trace element insights into heterogeneity of subridge mantle. Geochemistry, Geophysics, Geosystems, 15(6): 2438-2453 doi: 10.1002/2014GC005314

     

    McCarthy A and Müntener O. 2015. Ancient depletion and mantle heterogeneity: Revisiting the Permian-Jurassic paradox of Alpine peridotites. Geology, 43(3): 255-258 doi: 10.1130/G36340.1

     

    Meyzen CM, Ludden JN, Humler E, Luais B, Toplis MJ, Mével C and Storey M. 2005. New insights into the origin and distribution of the DUPAL isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 6(11): Q11K11

     

    Moores EM, Simmons N, Basu AR and Gregory RT. 2021. The Indian Ocean, its supra-subduction history, and implications for ophiolites. In: Wakabayashi J and Dilek Y (eds. ). Plate Tectonics, Ophiolites, and Societal Significance of Geology: A Celebration of the Career of Eldridge Moores. Geological Society of America Special Paper, 1-14

     

    Morgan JP. 1987. Melt migration beneath mid-ocean spreading centers. Geophysical Research Letters, 14(12): 1238-1241 doi: 10.1029/GL014i012p01238

     

    Müntener O, Pettke T, Desmurs L, Meier M and Schaltegger U. 2004. Refertilization of mantle peridotite in embryonic ocean basins: Trace element and Nd isotopic evidence and implications for crust-mantle relationships. Earth and Planetary Science Letters, 221(1-4): 293-308 doi: 10.1016/S0012-821X(04)00073-1

     

    Niu YL, Waggoner DG, Sinton JM and Mahoney JJ. 1996. Mantle source heterogeneity and melting processes beneath seafloor spreading centers: The East Pacific Rise, 18~19°S. Journal of Geophysical Research: Solid Earth, 101(B12): 27711-27733 doi: 10.1029/96JB01923

     

    Niu YL. 1997. Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites. Journal of Petrology, 38(8): 1047-1074 doi: 10.1093/petroj/38.8.1047

     

    Niu YL and Batiza R. 1997. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth and Planetary Science Letters, 148(3-4): 471-483 doi: 10.1016/S0012-821X(97)00048-4

     

    Niu YL and Hékinian R. 1997. Spreading-rate dependence of the extent of mantle melting beneath ocean ridges. Nature, 385(6614): 326-329 doi: 10.1038/385326a0

     

    Niu YL, Collerson KD, Batiza R, Wendt JI and Regelous M. 1999. Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: The East Pacific Rise at 11°20'N. Journal of Geophysical Research: Solid Earth, 104(B4): 7067-7087 doi: 10.1029/1998JB900037

     

    Niu YL, Regelous M, Wendt IJ, Batiza R and O'Hara MJ. 2002. Geochemistry of near-EPR seamounts: Importance of source vs. process and the origin of enriched mantle component. Earth and Planetary Science Letters, 199(3-4): 327-345

     

    Niu YL. 2004. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45(12): 2423-2458 doi: 10.1093/petrology/egh068

     

    O'Reilly SY, Zhang M, Griffin WL, Begg G and Hronsky J. 2009. Ultradeep continental roots and their oceanic remnants: A solution to the geochemical "mantle reservoir" problem? Lithos, 112: 1043-1054 doi: 10.1016/j.lithos.2009.04.028

     

    Parkinson IJ and Pearce JA. 1998. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): Evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9): 1577-1618 doi: 10.1093/petroj/39.9.1577

     

    Parkinson IJ, Hawkesworth CJ and Cohen AS. 1998. Ancient mantle in a modern arc: Osmium isotopes in izu-bonin-mariana forearc peridotites. Science, 281(5385): 2011-2013 doi: 10.1126/science.281.5385.2011

     

    Plank T, Spiegelman M, Langmuir CH and Forsyth DW. 1995. The meaning of "mean F": Clarifying the mean extent of melting at ocean ridges. Journal of Geophysical Research: Solid Earth, 100(B8): 15045-15052 doi: 10.1029/95JB01148

     

    Qin ZW. 1992. Disequilibrium partial melting model and its implications for trace element fractionations during mantle melting. Earth and Planetary Science Letters, 112(1-4): 75-90 doi: 10.1016/0012-821X(92)90008-J

     

    Rampone E, Hofmann AW, Piccardo GB, Vannucci R, Bottazzi P and Ottolini L. 1995. Petrology, mineral and isotope geochemistry of the external liguride peridotites (Northern Apennines, Italy). Journal of Petrology, 36(1): 81-105 doi: 10.1093/petrology/36.1.81

     

    Rampone E, Hofmann AW and Raczek I. 1998. Isotopic contrasts within the Internal Liguride ophiolite (N. Italy): The lack of a genetic mantle-crust link. Earth and Planetary Science Letters, 163(1-4): 175-189 doi: 10.1016/S0012-821X(98)00185-X

     

    Rampone E and Hofmann AW. 2012. A global overview of isotopic heterogeneities in the oceanic mantle. Lithos, 148: 247-261 doi: 10.1016/j.lithos.2012.06.018

     

    Rampone E and Sanfilippo A. 2021. The heterogeneous Tethyan oceanic lithosphere of the Alpine ophiolites. Elements, 17(1): 23-28 doi: 10.2138/gselements.17.1.23

     

    Rehkämper M and Hofmann AW. 1997. Recycled ocean crust and sediment in Indian Ocean MORB. Earth and Planetary Science Letters, 147(1-4): 93-106 doi: 10.1016/S0012-821X(97)00009-5

     

    Reisberg L. 2021. Osmium isotope constraints on formation and refertilization of the non-cratonic continental mantle lithosphere. Chemical Geology, 574: 120245 doi: 10.1016/j.chemgeo.2021.120245

     

    Richter M, Nebel O, Maas R, Mather B, Nebel-Jacobsen Y, Capitanio FA, Dick HJB and Cawood PA. 2020. An Early Cretaceous subduction-modified mantle underneath the ultraslow spreading Gakkel Ridge, Arctic Ocean. Science Advances, 6(44): eabb4340 doi: 10.1126/sciadv.abb4340

     

    Rochat L, Pilet S, Müntener O, Duretz T, Baumgartner L, Abe N and Hirano N. 2017. Garnet xenocryst from petit-spot lavas as an indicator for off-axis mantle refertilization at intermediate spreading ridges. Geology, 45(12): 1091-1094 doi: 10.1130/G39427.1

     

    Rubin KH and Sinton JM. 2007. Inferences on mid-ocean ridge thermal and magmatic structure from MORB compositions. Earth and Planetary Science Letters, 260(1-2): 257-276 doi: 10.1016/j.epsl.2007.05.035

     

    Rudge JF, Maclennan J and Stracke A. 2013. The geochemical consequences of mixing melts from a heterogeneous mantle. Geochimica et Cosmochimica Acta, 114: 112-143 doi: 10.1016/j.gca.2013.03.042

     

    Salters VJM and Dick HJB. 2002. Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites. Nature, 418: 68-72 doi: 10.1038/nature00798

     

    Sanfilippo A, Salters V, Tribuzio R and Zanetti A. 2019. Role of ancient, ultra-depleted mantle in Mid-Ocean-Ridge magmatism. Earth and Planetary Science Letters, 511: 89-98 doi: 10.1016/j.epsl.2019.01.018

     

    Schilling JG. 1973. Iceland mantle plume: Geochemical study of Reykjanes ridge. Nature, 242(5400): 565-571 doi: 10.1038/242565a0

     

    Schilling JG. 1975. Rare-earth variations across "normal segments" of the Reykjanes Ridge, 60°~53°N, Mid-Atlantic Ridge, 29°S, and East Pacific Rise, 2°~19°S, and evidence on the composition of the underlying low-velocity layer. Journal of Geophysical Research, 80(11): 1459-1473 doi: 10.1029/JB080i011p01459

     

    Schilling JG, Zajac M, Evans R, Johnston T, White W, Devine JD and Kingsley R. 1983. Petrologic and geochemical variations along the mid-Atlantic Ridge from 29°N to 73°N. American Journal of Science, 283(6): 510-586 doi: 10.2475/ajs.283.6.510

     

    Seyler M, Cannat M and Mével C. 2003. Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68°E). Geochemistry, Geophysics, Geosystems, 4(2): 9101, doi: 10.1029/2002GC000305

     

    Shimizu K, Saal AE, Myers CE, Nagle AN, Hauri EH, Forsyth DW, Kamenetsky VS and Niu YL. 2016. Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: Implications for the volatile content of the Pacific upper mantle. Geochimica et Cosmochimica Acta, 176: 44-80 doi: 10.1016/j.gca.2015.10.033

     

    Smith PM and Asimow PD. 2005. Adiabat_1ph: A new public front-end to the MELTS, pMELTS, and pHMELTS models. Geochemistry, Geophysics, Geosystems, 6(2): Q02004, doi: 10.1029/2004GC000816

     

    Snow JE, Schmidt G and Rampone E. 2000. Os isotopes and highly siderophile elements (HSE) in the Ligurian ophiolites, Italy. Earth and Planetary Science Letters, 175(1-2): 119-132 doi: 10.1016/S0012-821X(99)00280-0

     

    Sparks DW and Parmentier EM. 1991. Melt extraction from the mantle beneath spreading centers. Earth and Planetary Science Letters, 105(4): 368-377 doi: 10.1016/0012-821X(91)90178-K

     

    Spiegelman M and McKenzie D. 1987. Simple 2-D models for melt extraction at mid-ocean ridges and island arcs. Earth and Planetary Science Letters, 83(1-4): 137-152 doi: 10.1016/0012-821X(87)90057-4

     

    Spiegelman M. 1993. Physics of melt extraction: Theory, implications and applications. Philosophical Transactions: Physical Sciences and Engineering, 342(1663): 23-41

     

    Stolper E and Asimow P. 2007. Insights into mantle melting from graphical analysis of one-component systems. American Journal of Science, 307(8): 1051-1139 doi: 10.2475/08.2007.01

     

    Stracke A and Bourdon B. 2009. The importance of melt extraction for tracing mantle heterogeneity. Geochimica et Cosmochimica Acta, 73(1): 218-238 doi: 10.1016/j.gca.2008.10.015

     

    Stracke A, Snow JE, Hellebrand E, Von Der Handt A, Bourdon B, Birbaum K and Günther D. 2011. Abyssal peridotite Hf isotopes identify extreme mantle depletion. Earth and Planetary Science Letters, 308(3-4): 359-368 doi: 10.1016/j.epsl.2011.06.012

     

    Stracke A, Genske F, Berndt J and Koornneef JM. 2019. Ubiquitous ultra-depleted domains in Earth's mantle. Nature Geoscience, 12(10): 851-855 doi: 10.1038/s41561-019-0446-z

     

    Stracke A. 2021. A process-oriented approach to mantle geochemistry. Chemical Geology, 579: 120350 doi: 10.1016/j.chemgeo.2021.120350

     

    Su YJ. 2002. Mid-ocean ridge basalt trace element systematics: Constraints from database management. ICP-MS analyses, global data compilation, and petrologic modeling. Ph. D. Dissertation. New York: Columbia University

     

    Sun SS, Nesbitt RW and Sharaskin AY. 1979. Geochemical characteristics of mid-ocean ridge basalts. Earth and Planetary Science Letters, 44(1): 119-138 doi: 10.1016/0012-821X(79)90013-X

     

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345

     

    The MELT Seismic Team. 1998. Imaging the deep seismic structure beneath a mid-ocean ridge: The MELT experiment. Science, 280(5367): 1215-1218 doi: 10.1126/science.280.5367.1215

     

    Tribuzio R, Renna MR, Dallai L and Zanetti A. 2014. The magmatic-hydrothermal transition in the lower oceanic crust: Clues from the Ligurian ophiolites, Italy. Geochimica et Cosmochimica Acta, 130: 188-211 doi: 10.1016/j.gca.2014.01.010

     

    Turcotte DL and Morgan JP. 1992. The physics of magma migration and mantle flow beneath a mid-ocean ridge. In: Morgan JP, Blackman DK and Sinton JM (eds. ). Mantle Flow and Melt Generation at Mid-ocean Ridges. Washington, D.C. : American Geophysical Union, 155-182

     

    Turner AJ, Katz RF, Behn MD and Keller T. 2017. Magmatic focusing to mid-ocean ridges: The role of grain-size variability and non-Newtonian viscosity. Geochemistry, Geophysics, Geosystems, 18(12): 4342-4355 doi: 10.1002/2017GC007048

     

    Urann BM, Dick HJB, Parnell-Turner R and Casey JF. 2020. Recycled arc mantle recovered from the Mid-Atlantic Ridge. Nature Communications, 11(1): 3887 doi: 10.1038/s41467-020-17604-8

     

    van Acken D, Becker H and Walker RJ. 2008. Refertilization of Jurassic oceanic peridotites from the Tethys Ocean-Implications for the Re-Os systematics of the upper mantle. Earth and Planetary Science Letters, 268(1-2): 171-181 doi: 10.1016/j.epsl.2008.01.002

     

    Walter MJ. 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology, 39(1): 29-60 doi: 10.1093/petroj/39.1.29

     

    Wang JX, Zhou HY, Salters VJM, Dick HJB, Standish JJ and Wang CH. 2020. Trace element and isotopic evidence for recycled lithosphere from basalts from 48 to 53°E, Southwest Indian Ridge. Journal of Petrology, 61(10): egaa068

     

    Wang W, Kelley KA, Li ZG, Chu FY, Dong YP, Chen L, Dong YH and Li J. 2021. Volatile element evidence of local MORB mantle heterogeneity beneath the Southwest Indian Ridge, 48°~51°E. Geochemistry, Geophysics, Geosystems, 22(7): e2021GC009647

     

    Wanless VD, Behn MD, Shaw AM and Plank T. 2014. Variations in melting dynamics and mantle compositions along the Eastern Volcanic Zone of the Gakkel Ridge: Insights from olivine-hosted melt inclusions. Contributions to Mineralogy and Petrology, 167(5): 1005 doi: 10.1007/s00410-014-1005-7

     

    Warren JM, Shimizu N, Sakaguchi C, Dick HJB and Nakamura E. 2009. An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions. Journal of Geophysical Research, 114: B12203 doi: 10.1029/2008JB006186

     

    Warren JM. 2016. Global variations in abyssal peridotite compositions. Lithos, 248-251: 193-219 doi: 10.1016/j.lithos.2015.12.023

     

    Weatherley SM and Katz RF. 2016. Melt transport rates in heterogeneous mantle beneath mid-ocean ridges. Geochimica et Cosmochimica Acta, 172: 39-54 doi: 10.1016/j.gca.2015.09.029

     

    Weis D, Bassias Y, Gautier I and Mennessier JP. 1989. DUPAL anomaly in existence 115Ma ago: Evidence from isotopic study of the Kerguelen Plateau (South Indian Ocean). Geochimica et Cosmochimica Acta, 53(8): 2125-2131 doi: 10.1016/0016-7037(89)90331-1

     

    White WM and Klein EM. 2014. Composition of the oceanic crust. In: Holland HD and Turekian KK (eds. ). Treatise on Geochemistry. 2nd Edition. Oxford: Elsevier, 4: 457-496

     

    Wood DA. 1979. A variably veined suboceanic upper mantle-Genetic significance for mid-ocean ridge basalts from geochemical evidence. Geology, 7(10): 499-503 doi: 10.1130/0091-7613(1979)7<499:AVVSUM>2.0.CO;2

     

    Workman RK and Hart SR. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1-2): 53-72 doi: 10.1016/j.epsl.2004.12.005

     

    Wu FY, Liu CZ, Zhang LL, Zhang C, Wang JG, Ji WQ and Liu XC. 2014. Yarlung Zangbo ophiolite: A critical updated view. Acta Petrologica Sinica, 30(2): 293-325 (in Chinese with English abstract)

     

    Xiong Q, Griffin WL, Zheng JP, O'Reilly SY, Pearson NJ, Xu B and Belousova EA. 2016. Southward trench migration at ca. 130~120Ma caused accretion of the Neo-Tethyan forearc lithosphere in Tibetan ophiolites. Earth and Planetary Science Letters, 438: 57-65

     

    Xiong Q, Griffin WL, Zheng JP, Pearson NJ and O'Reilly SY. 2017a. Two-layered oceanic lithospheric mantle in a Tibetan ophiolite produced by episodic subduction of Tethyan slabs. Geochemistry, Geophysics, Geosystems, 18(3): 1189-1213 doi: 10.1002/2016GC006681

     

    Xiong Q, Henry H, Griffin WL, Zheng JP, Satsukawa T, Pearson NJ and O'Reilly SY. 2017b. High- and low-Cr chromitite and dunite in a Tibetan ophiolite: Evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean. Contributions to Mineralogy and Petrology, 172(6): 45 doi: 10.1007/s00410-017-1364-y

     

    Xu Y, Liu JG, Xiong Q, Su BX, Scott JM, Xu B, Zhu DC and Pearson DG. 2020. The complex life cycle of oceanic lithosphere: A study of Yarlung-Zangbo ophiolitic peridotites, Tibet. Geochimica et Cosmochimica Acta, 277: 175-191 doi: 10.1016/j.gca.2020.03.024

     

    Yang AY, Langmuir CH, Cai Y, Michael P, Goldstein SL and Chen Z. 2021. A subduction influence on ocean ridge basalts outside the Pacific subduction shield. Nature Communications, 12(1): 4757 doi: 10.1038/s41467-021-25027-2

     

    Zhang C, Liu CZ, Liu T and Wu FY. 2020a. Evolution of mantle peridotites from the Luobusa ophiolite in the Tibetan Plateau: Sr-Nd-Hf-Os isotope constraints. Lithos, 362-363: 105477 doi: 10.1016/j.lithos.2020.105477

     

    Zhang C, Liu CZ, Ji WB, Liu T and Wu FY. 2020b. Heterogeneous sub-ridge mantle of the Neo-Tethys: Constraints from Re-Os isotope and HSE compositions of the Xigaze ophiolites. Lithos, 378-379: 105819 doi: 10.1016/j.lithos.2020.105819

     

    Zhang LL. 2014. Formation age and mechanism of the Zedong ophiolite in South Tibet. Ph. D. Dissertation. Beijing: University of Chinese Academy of Sciences, 1-178 (in Chinese)

     

    Zhou XH, Zhang HF, Zheng JP, Xia QK, Liu YS, Tang YJ, Huang F and Liu CZ. 2013. Progresses of mantle geochemistry in china during the first decade of the 21th century. Bulletin of Mineralogy, Petrology and Geochemistry, 32(4): 379-391 (in Chinese with English abstract) doi: 10.3969/j.issn.1007-2802.2013.04.001

     

    Zanetti A, D'Antonio M, Spadea P, Raffone N, Vannucci R and Bruguier O. 2006. Petrogenesis of mantle peridotites from the Izu-Bonin-Mariana (IBM) forearc. Ofioliti, 31(2): 189-206

     

    Zindler A, Staudigel H and Batiza R. 1984. Isotope and trace element geochemistry of young Pacific seamounts: Implications for the scale of upper mantle heterogeneity. Earth and Planetary Science Letters, 70(2): 175-195 doi: 10.1016/0012-821X(84)90004-9

     

    Zindler A and Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571 doi: 10.1146/annurev.ea.14.050186.002425

     

    吴福元, 刘传周, 张亮亮, 张畅, 王建刚, 纪伟强, 刘小驰. 2014. 雅鲁藏布蛇绿岩——事实与臆想. 岩石学报, 30(2): 293-325 http://www.ysxb.ac.cn/article/id/aps_20140201

     

    张亮亮. 2014. 藏南泽当蛇绿岩时代与成因. 博士学位论文. 北京: 中国科学院大学, 1-178

     

    周新华, 张宏福, 郑建平, 夏群科, 刘勇胜, 汤艳杰, 黄方, 刘传周. 2013. 新世纪十年地幔地球化学研究进展. 矿物岩石地球化学通报, 32(4): 379-391 doi: 10.3969/j.issn.1007-2802.2013.04.001

  • 加载中

(18)

(1)

计量
  • 文章访问数:  1946
  • PDF下载数:  285
  • 施引文献:  0
出版历程
收稿日期:  2022-06-22
修回日期:  2022-08-29
刊出日期:  2022-12-01

目录