Apollo 11月壤样品中太阳风成因的水及其意义

田恒次, 郝佳龙, 徐于晨, 杨蔚, 胡森, 张驰, 林杨挺, 李献华, 吴福元. 2022. Apollo 11月壤样品中太阳风成因的水及其意义. 岩石学报, 38(6): 1823-1831. doi: 10.18654/1000-0569/2022.06.19
引用本文: 田恒次, 郝佳龙, 徐于晨, 杨蔚, 胡森, 张驰, 林杨挺, 李献华, 吴福元. 2022. Apollo 11月壤样品中太阳风成因的水及其意义. 岩石学报, 38(6): 1823-1831. doi: 10.18654/1000-0569/2022.06.19
TIAN HengCi, HAO JiaLong, XU YuChen, YANG Wei, HU Sen, ZHANG Chi, LIN YangTing, LI XianHua, WU FuYuan. 2022. Solar wind-implanted water in Apollo 11 lunar soils and its implications. Acta Petrologica Sinica, 38(6): 1823-1831. doi: 10.18654/1000-0569/2022.06.19
Citation: TIAN HengCi, HAO JiaLong, XU YuChen, YANG Wei, HU Sen, ZHANG Chi, LIN YangTing, LI XianHua, WU FuYuan. 2022. Solar wind-implanted water in Apollo 11 lunar soils and its implications. Acta Petrologica Sinica, 38(6): 1823-1831. doi: 10.18654/1000-0569/2022.06.19

Apollo 11月壤样品中太阳风成因的水及其意义

  • 基金项目:

    本文受中国科学院地质与地球物理研究所重点部署项目(IGGCAS-202101)和中国科学院青年创新促进会(2022064)联合资助

详细信息
    作者简介:

    田恒次, 男, 1987年生, 副研究员, 从事地球化学研究, E-mail: hctian@mail.iggcas.ac.cn

    通讯作者: 林杨挺, 男, 1962年生, 研究员, 从事天体化学和陨石学研究, E-mail: linyt@mail.iggcas.ac.cn
  • 中图分类号: P597.2;P691

Solar wind-implanted water in Apollo 11 lunar soils and its implications

More Information
  • 为研究太阳风成因水在月表低纬度地区的分布特征,本文对中国科学院地质与地球物理研究所博物馆珍藏的一份Apollo 11月壤样品开展了单颗粒原位纳米离子探针H同位素和水含量深度剖面分析。结果表明月壤颗粒表层(< 200nm)具有较高的水含量(剖面最大水含量变化范围为0.35%~1.59%,平均值为0.82%),该结果与前人对Apollo样品的报导类似。除一颗斜长石的H同位素组成(δD=-262‰)落在月幔范围内,其余颗粒表层均非常贫D(δD变化范围为-987‰~-642‰)。该强烈贫D的同位素组成与太阳风一致,完全不同于地球大气水,不仅证明这些样品的月球来源,并且主要是太阳风注入的贡献。矿物颗粒之间的水含量和δD值变化,很可能与太阳风注入后的扩散丢失程度不同有关。另外,我们观察到橄榄石、单斜辉石和长石的水含量剖面比较类似,整体呈现随深度逐渐递减的趋势。相比之下,玻璃质颗粒的水含量剖面呈现随深度先上升再降低的峰形特征,峰位在25~43nm深度。这两者之间的差异很可能跟H在矿物和玻璃中的扩散速率、辐射损伤层等的差异有关。本项研究也证明,即使对于H这样易于受地球污染的元素,在普通条件下(北京、瓶中密封)经过长达50多年的时间,仍能很好地保存注入月壤颗粒中的太阳风信息。但是低温、干燥和真空/惰性气体环境仍是长期保存的有利条件。

  • 加载中
  • 图 1 

    Apollo样品水含量深度剖面前人研究工作(数据来自Leich et al., 1973, 1974; Hashizume et al., 2000)

    Figure 1. 

    The water-content depth profiles of Apollo lunar grains in previous studies (data from Leich et al., 1973, 1974; Hashizume et al., 2000)

    图 2 

    挑选的Apollo 11月壤颗粒镜下照片(a)和月壤颗粒压铟后的背散射图像(b)

    Figure 2. 

    The microscope photo for the selected Apollo 11 grains (a) and the back-scattered electron image (b)

    图 3 

    样品A11-011-1的原始O、H和D计数剖面变化(a)和水含量换算曲线(b)

    Figure 3. 

    The O, H and D depth profile of sample A11-011-1 (a) and the water-content calibration line determined by the apatite and silicate glass standards (b)

    图 4 

    Apollo 11月壤颗粒二次电子图像

    Figure 4. 

    The secondary electron images of the Apollo 11 grains

    图 5 

    Apollo 11月壤颗粒水含量剖面随深度变化结果

    Figure 5. 

    The water-content versus depth for the Apollo 11 lunar grains

    图 6 

    斜长石A11-021-1的H、O、C和C/O深度剖面变化

    Figure 6. 

    The H, O, C and C/O depth profiles for sample A11-021-1

    图 7 

    Apollo 11月壤颗粒D/H比值与其它储库H同位素组成对比关系图(底图中月球、地球、球粒陨石、IDP、彗星等储库H同位素组成来自Liu et al., 2012)

    Figure 7. 

    The D/H ratios for the Apollo 11 lunar grains, in comparison with other reservoirs (the data for Earth, Moon, chondrites, IDP and comets from Liu et al., 2012)

    表 1 

    Apollo 11月壤颗粒水含量特征和H同位素组成

    Table 1. 

    The water content and hydrogen isotopic compositions of the Apollo 11 lunar grains

    样品号 颗粒类型 最大水含量
    (%)
    δD in 100nm
    (‰)
    δD误差(1σ) 900~1000nm深度水含量
    (×10-6)
    峰位置
    (nm)
    A11-005-1 玻璃 0.74 -868 19 1630 ~43
    A11-005-2 玻璃 0.70 -932 16 940 ~33
    A11-016-1 玻璃 0.90 -847 21 610
    A11-016-2 玻璃 1.59 -732 26 570
    A11-017-1 玻璃 0.94 -987 5 260 ~25
    A11-011-1 斜长石 0.66 -845 26 180
    A11-019-2 斜长石 0.72 -642 52 230
    A11-021-1 斜长石 0.35 -262 77 270
    A11-018-1 橄榄石 1.17 -929 24 200
    A11-012-1 单斜辉石 0.86 -894 18 70
    A11-020-1 单斜辉石 0.61 -794 31 490
    A11-020-2 单斜辉石 0.57 -760 35 360
    注:颗粒类型由拉曼光谱和扫描电镜能谱分析获得.根据对嫦娥五号月壤颗粒的分析测试,每层剥蚀厚度约1nm左右.由于每层所获得的D计数非常低,本次研究计算了前100层累加值的H同位素组成.δD in 100nm (‰)是由前100层所获得的D/H比值计算得来,误差为统计误差.900~1000nm深度水含量(×10-6): 水含量在900~1000nm深度的平均值(样品A11-020-1为统计500~600nm深度范围)
    下载: 导出CSV
  •  

    Alexander CMOD, Bowden R, Fogel ML, Howard KT, Herd CDK and Nittler LR. 2012. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science, 337(6095): 721-723 doi: 10.1126/science.1223474

     

    Aubaud C, Withers AC, Hirschmann MM, Guan YB, Leshin LA, Mackwell SJ and Bell DR. 2007. Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals. American Mineralogist, 92(5-6): 811-828 doi: 10.2138/am.2007.2248

     

    Barnes JJ, Tartèse R, Anand M, McCubbin FM, Franchi IA, Starkey NA and Russell SS. 2014. The origin of water in the primitive Moon as revealed by the lunar Highlands samples. Earth and Planetary Science Letters, 390: 244-252 doi: 10.1016/j.epsl.2014.01.015

     

    Barnes JJ, Kring DA, Tartèse R, Franchi IA, Anand M and Russell SS. 2016. An asteroidal origin for water in the Moon. Nature Communications, 7: 11684 doi: 10.1038/ncomms11684

     

    Bradley JP, Ishii HA, Gillis-Davis JJ, Ciston J, Nielsen MH, Bechtel HA and Martin MC. 2014. Detection of solar wind-produced water in irradiated rims on silicate minerals. Proceedings of the National Academy of Sciences of the United States of America, 111(5): 1732-1735 doi: 10.1073/pnas.1320115111

     

    Che XC, Nemchin A, Liu DY, Long T, Wang C, Norman MD, Joy KH, Tartese R, Head J, Jolliff B, Snape JF, Neal CR, Whitehouse MJ, Crow C, Benedix G, Jourdan F, Yang ZQ, Yang C, Liu JH, Xie SW, Bao ZM, Fan RL, Li DP, Li ZS and Webb SG. 2021. Age and composition of young basalts on the Moon, measured from samples returned by Chang'e-5. Science, 374(6569): 887-890 doi: 10.1126/science.abl7957

     

    Craig H. 1961. Isotopic variations in meteoric waters. Science, 133(3465): 1702-1703 doi: 10.1126/science.133.3465.1702

     

    Epstein S and Taylor HP Jr. 1973. The isotopic composition and concentration of water, hydrogen, and carbon in some Apollo 15 and 16 soils and in the Apollo 17 orange soil. Proceedings of the 4th Lunar Science Conference, 2: 1559-1575

     

    Farrell WM, Hurley DM and Zimmerman MI. 2015. Solar wind implantation into lunar regolith: Hydrogen retention in a surface with defects. Icarus, 255: 116-126 doi: 10.1016/j.icarus.2014.09.014

     

    Farrell WM, Hurley DM, Esposito VJ, McLain JL and Zimmerman MI. 2017. The statistical mechanics of solar wind hydroxylation at the Moon, within lunar magnetic anomalies, and at Phobos. Journal of Geophysical Research: Planets, 122(1): 269-289 doi: 10.1002/2016JE005168

     

    Greenwood JP, Itoh S, Sakamoto N, Warren P, Taylor L and Yurimoto H. 2011. Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nature Geoscience, 4(2): 79-82 doi: 10.1038/ngeo1050

     

    Gu LX, Chen YJ, Xu YC, Tang X, Lin YT, Noguchi T and Li JH. 2022. Space weathering of the Chang'e-5 lunar sample from a mid-high latitude region on the Moon. Geophysical Research Letters, 49(7): e2022GL097875

     

    Hashizume K, Chaussidon M, Marty B and Robert F. 2000. Solar wind record on the Moon: Deciphering Presolar from planetary nitrogen. Science, 290(5494): 1142-1145 doi: 10.1126/science.290.5494.1142

     

    Hu S, Lin Y, Zhang J, Hao J, Feng L, Xu L, Yang W and Yang J. 2014. NanoSIMS analyses of apatite and melt inclusions in the GRV 020090 Martian meteorite: Hydrogen isotope evidence for recent past underground hydrothermal activity on Mars. Geochimica et Cosmochimica Acta, 140: 321-333 doi: 10.1016/j.gca.2014.05.008

     

    Hu S, Lin YT, Zhang JC, Hao JL, Yang W and Deng LW. 2015. Measurements of water content and D/H ratio in apatite and silicate glasses using a NanoSIMS 50L. Journal of Analytical Atomic Spectrometry, 30(4): 967-978 doi: 10.1039/C4JA00417E

     

    Hu S, He HC, Ji JL, Lin YT, Hui HJ, Anand M, Tartèse R, Yan YH, Hao JL, Li RY, Gu LX, Guo Q, He HY and Ouyang ZY. 2021. A dry lunar mantle reservoir for young mare basalts of Chang'e-5. Nature, 600(7887): 49-53 doi: 10.1038/s41586-021-04107-9

     

    Hui HJ, Peslier AH, Zhang YX and Neal CR. 2013. Water in lunar anorthosites and evidence for a wet early Moon. Nature Geoscience, 6(3): 177-180 doi: 10.1038/ngeo1735

     

    Hui HJ, Guan YB, Chen Y, Peslier AH, Zhang YX, Liu Y, Flemming RL, Rossman GR, Eiler JM, Neal CR and Osinski GR. 2017. A heterogeneous lunar interior for hydrogen isotopes as revealed by the lunar highlands samples. Earth and Planetary Science Letters, 473: 14-23 doi: 10.1016/j.epsl.2017.05.029

     

    Huss GR, Nagashima K, Burnett DS, Jurewicz AJG and Olinger CT. 2012. A new upper limit on the D/H ratio in the solar wind. In: 43rd Lunar and Planetary Science Conference. The Woodlands, Texas: 1709

     

    Keller LP and McKay DS. 1997. The nature and origin of rims on lunar soil grains. Geochimica et Cosmochimica Acta, 61(11): 2331-2341 doi: 10.1016/S0016-7037(97)00085-9

     

    Leich DA, Tombrello TA and Burnett DS. 1973. The depth distribution of hydrogen in lunar materials. Earth and Planetary Science Letters, 19(3): 305-314 doi: 10.1016/0012-821X(73)90080-0

     

    Leich DA, Goldberg RH, Burnett DS and Tombrello TA. 1974. Hydrogen and fluorine in the surfaces of lunar samples. In: Proceedings of the 5th Lunar Science Conference. Houston, TX: Pergamon Press, 1869-1884

     

    Li CL, Hu H, Yang MF, Pei ZY, Zhou Q, Ren X, Liu B, Liu DW, Zeng XG, Zhang GL, Zhang HB, Liu JJ, Wang Q, Deng XJ, Xiao CJ, Yao YG, Xue DS, Zuo W, Su Y, Wen WB and Ouyang ZY. 2022. Characteristics of the lunar samples returned by the Chang'E-5 mission. National Science Review, 9(2): nwab188 doi: 10.1093/nsr/nwab188

     

    Li QL, Zhou Q, Liu Y, Xiao ZY, Lin YT, Li JH, Ma HX, Tang GQ, Guo S, Tang X, Yuan JY, Li J, Wu FY, Ouyang ZY, Li CL and Li XH. 2021. Two-billion-year-old volcanism on the Moon from Chang'e-5 basalts. Nature, 600(7887): 54-58 doi: 10.1038/s41586-021-04100-2

     

    Li S and Milliken RE. 2017. Water on the surface of the Moon as seen by the Moon Mineralogy Mapper: Distribution, abundance, and origins. Science Advances, 3(9): e1701471 doi: 10.1126/sciadv.1701471

     

    Liu Y, Guan YB, Zhang YX, Rossman GR, Eiler JM and Taylor LA. 2012. Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water. Nature Geoscience, 5(11): 779-782 doi: 10.1038/ngeo1601

     

    Lucey P, Korotev RL, Gillis JJ, Taylor LA, Lawrence D, Campbell BA, Elphic R, Feldman B, Hood LL, Hunten D, Mendillo M, Noble S, Papike JJ, Reedy RC, Lawson S, Prettyman T, Gasnault O and Maurice S. 2006. Understanding the lunar surface and space-moon interactions. Reviews in Mineralogy and Geochemistry, 60(1): 83-219 doi: 10.2138/rmg.2006.60.2

     

    Merlivat L, Lelu M, Nief G and Roth E. 1974. Deuterium, hydrogen, and water content of lunar material. In: Proceedings of the 5th Lunar Conference. Houston, TX: Pergamon Press, Inc., 1885-1895

     

    Mills RD, Simon JI, Alexander CMO, Wang J and Hauri EH. 2017. Water in alkali feldspar: The effect of rhyolite generation on the lunar hydrogen budget. Geochemical Perspectives Letters, 3: 115-123

     

    Nadeau SL, Epstein S and Stolper E. 1999. Hydrogen and carbon abundances and isotopic ratios in apatite from alkaline intrusive complexes, with a focus on carbonatites. Geochimica et Cosmochimica Acta, 63(11-12): 1837-1851 doi: 10.1016/S0016-7037(99)00057-5

     

    Noble SK, Keller LP and Pieters CM. 2005. Evidence of space weathering in regolith breccias Ⅰ: Lunar regolith breccias. Meteoritics & Planetary Science, 40(3): 397-408

     

    Peslier AH, Schönbächler M, Busemann H and Karato SI. 2017. Water in the Earth's Interior: Distribution and origin. Space Science Reviews, 212(1): 743-810

     

    Schorghofer N and Taylor GJ. 2007. Subsurface migration of H2O at lunar cold traps. Journal of Geophysical Research: Planets, 112(E2): E02010

     

    Stephant A and Robert F. 2014. The negligible chondritic contribution in the lunar soils water. Proceedings of the National Academy of Sciences of the United States of America, 111(42): 15007-15012 doi: 10.1073/pnas.1408118111

     

    Stephant A, Anand M, Tartèse R, Zhao X, Degli-Alessandrini G and Franchi IA. 2020. The hydrogen isotopic composition of lunar melt inclusions: An interplay of complex magmatic and secondary processes. Geochimica et Cosmochimica Acta, 284: 196-221 doi: 10.1016/j.gca.2020.06.017

     

    Sunshine JM, Farnham TL, Feaga LM, Groussin O, Merlin F, Milliken RE and A'Hearn MF. 2009. Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft. Science, 326(5952): 565-568 doi: 10.1126/science.1179788

     

    Wu FY, Liu Q and Tian HC. 2022. How many lunar samples does China have? Acta Petrologica Sinica, 38(6): 1795-1803 (in Chinese with English abstract)

     

    Zhang TX, Zhang H, Lai HR, Zhong J, Liu LB, Wei Y, Cao JB, Cui J, Zhu CB, Fu SY and Wan WX. 2020. Asymmetric lunar magnetic perturbations produced by reflected solar wind particles. The Astrophysical Journal Letters, 893(2): L36 doi: 10.3847/2041-8213/ab8640

     

    吴福元, 刘强, 田恒次. 2022. 中国有哪些月球样品? 岩石学报, 38(6): 1795-1803 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2022.06.16

  • 加载中

(7)

(1)

计量
  • 文章访问数:  1858
  • PDF下载数:  179
  • 施引文献:  0
出版历程
收稿日期:  2022-05-23
修回日期:  2022-06-02
刊出日期:  2022-06-01

目录