吉林中部后倒木中侏罗世花岗质岩石的成因: 对中亚造山带东部元古宙大陆地壳生长的启示

张立仕, 孙丰月, 钱烨, 张雅静, 王力, 王琳琳. 2021. 吉林中部后倒木中侏罗世花岗质岩石的成因: 对中亚造山带东部元古宙大陆地壳生长的启示. 岩石学报, 37(7): 2051-2072. doi: 10.18654/1000-0569/2021.07.06
引用本文: 张立仕, 孙丰月, 钱烨, 张雅静, 王力, 王琳琳. 2021. 吉林中部后倒木中侏罗世花岗质岩石的成因: 对中亚造山带东部元古宙大陆地壳生长的启示. 岩石学报, 37(7): 2051-2072. doi: 10.18654/1000-0569/2021.07.06
ZHANG LiShi, SUN FengYue, QIAN Ye, ZHANG YaJing, WANG Li, WANG LinLin. 2021. Petrogenesis of Middle Jurassic granitoids in Houdaomu, Central Jilin Province: Implications for the growth of Proterozoic continental crust in the eastern CAOB. Acta Petrologica Sinica, 37(7): 2051-2072. doi: 10.18654/1000-0569/2021.07.06
Citation: ZHANG LiShi, SUN FengYue, QIAN Ye, ZHANG YaJing, WANG Li, WANG LinLin. 2021. Petrogenesis of Middle Jurassic granitoids in Houdaomu, Central Jilin Province: Implications for the growth of Proterozoic continental crust in the eastern CAOB. Acta Petrologica Sinica, 37(7): 2051-2072. doi: 10.18654/1000-0569/2021.07.06

吉林中部后倒木中侏罗世花岗质岩石的成因: 对中亚造山带东部元古宙大陆地壳生长的启示

  • 基金项目:

    本文受国家重点研发计划项目(2017YFC0601304)和国家自然科学基金项目(41402060)联合资助

详细信息
    作者简介:

    张立仕, 男, 1987年生, 博士生, 矿物学、岩石学、矿床学专业, E-mail: 553195654@qq.com

    通讯作者: 孙丰月, 男, 1963年生, 教授, 博士生导师, 矿床学专业, E-mail: fengyuesunjlu@outlook.com
  • 中图分类号: P588.121;P597.3

Petrogenesis of Middle Jurassic granitoids in Houdaomu, Central Jilin Province: Implications for the growth of Proterozoic continental crust in the eastern CAOB

More Information
  • 中亚造山带属于地球上最大的增生型造山带其中之一,中亚造山带东部正是我国东北地区,而该地区的地壳增长时间与地壳增长机制仍然有待于进一步深入的研究。本研究选取中亚造山带东部后倒木地区的花岗质岩石为研究对象,进行岩石学、岩石地球化学、同位素年代学等研究,结合前人的研究成果,探讨其成因岩石学、构造背景以及对地壳增生的指示意义。通过同位素测年研究,发现后倒木地区的花岗岩类岩石就位于175~171Ma;全岩地球化学结果显示SiO2含量为66.58%~76.73%,Al2O3含量为12.21%~16.03%,MgO含量介于0.09%~2.07%之间,显示出高钾钙碱性特征;后倒木地区花岗岩类岩石富集大离子亲石元素,同时亏损高场强元素;Sr-Nd-Hf同位素显示:ISr值介于0.7063~0.7077之间,εNdt)值介于+2.38~+3.95之间,具年轻的tDM2年龄(639~768Ma),岩浆锆石εHft)值介于+4.1~+9.0之间,同样具有年轻的二阶段模式年龄tDM2(554~806Ma),揭示岩石重熔的下地壳物质可能是花岗岩类岩石的源区。综合研究表明,古太平洋板块俯冲导致区域下地壳熔融,形成该类花岗质岩石,而模式年龄揭示新元古代为中亚造山带重要的地壳生长期。

  • 加载中
  • 图 1 

    中亚造山带构造纲要图(a, 据Ge et al., 2017修改)、研究区构造位置图(b, 据张海洪等, 2016修改)和张广才岭地区地质简图(c, 据鞠楠, 2020修改)

    Figure 1. 

    Tectonic sketch map of CAOB (a, modified after Ge et al., 2017), tectonic sketch map of research area (b, modified after Zhang et al., 2016) and geological map of Zhangguangcai Range (c, modified after Ju, 2020)

    图 2 

    后倒木地区地质图(据杨宝森, 2011修改)

    Figure 2. 

    Geological map of the Houdaomu area (modified after Yang et al., 2011)

    图 3 

    后倒木花岗岩类岩石野外及镜下照片

    Figure 3. 

    Field and petrographic photos of granitoids in the Houdaomu

    图 4 

    后倒木花岗质岩石中锆石阴极发光图像

    Figure 4. 

    Cathodoluminescence (CL) images of representative zircons from granitoids in the Houdaomu

    图 5 

    后倒木花岗质岩石LA-ICP-MS锆石U-Pb年龄谐和图

    Figure 5. 

    U-Pb concordia diagrams of zircons for granitoids in the Houdaomu

    图 6 

    后倒木花岗质岩石QAP图解(a, 据Streckeisen, 1976)、SiO2-K2O图解(b, 据Morrison, 1980)和A/CNK-A/NK判别图解(c, 据Middlemost, 1994)

    Figure 6. 

    QAP diagram (after Streckeisen, 1976), SiO2 vs. K2O diagram (after Morrison, 1980) and A/CNK vs. A/NK diagram (after Middlemost, 1994) of granitoids in the Houdaomu

    图 7 

    后倒木花岗质岩石球粒陨石标准化稀土元素配分图(a、c、e)和原始地幔标准化微量元素蛛网图(b、d、f)(标准化值据Sun and McDonough, 1989)

    Figure 7. 

    REE chondrite-normalized patterns (a, c, e) and primitive mantle-normalized spider diagrams (b, d, f) of granitoids in the Houdaomu (normalization values after Sun and McDonough, 1989)

    图 8 

    后倒木花岗质岩石的成因判别图(底图据Whalen et al., 1987)

    Figure 8. 

    Discrimination diagrams of granitoids in the Houdaomu (base map after Whalen et al., 1987)

    图 9 

    后倒木花岗质岩石SiO2-Ce判别图解(a)、Rb-Y图解(b)和Rb-Th图解(c)(据Li et al., 2007)

    Figure 9. 

    SiO2 vs. Ce diagram (a), Rb vs. Y diagram (b) and Rb vs. Th diagram (c) (after Li et al., 2007) of granitoids in the Houdaomu

    图 10 

    后倒木花岗质岩石(87Sr/86Sr)i-εNd(t)图解(底图据Jahn et al., 1999; Wu et al., 2000)和εHf(t)-t图解

    Figure 10. 

    (87Sr/86Sr)i vs. εNd(t) diagram (after Jahn et al., 1999; Wu et al., 2000) and εHf(t) vs. t diagram of granitoids in the Houdaomu

    图 11 

    后倒木花岗质岩石SiO2-εNd(t)、Eu-Sr、Sr-Rb/Sr和Sr-Ba判别图解

    Figure 11. 

    Diagrams of SiO2 vs. εNd(t), Eu vs. Sr, Sr vs. Rb/Sr and Sr vs. Ba of granitoids in the Houdaomu

    图 12 

    后倒木花岗质岩石Harker图解

    Figure 12. 

    Diagrams of SiO2 against predominant oxides of granitoids in the Houdaomu

    图 13 

    后倒木花岗质岩石的Yb-Ta (a)、Y-Nb (b)、(Y+Nb)-Rb (c)、(Yb+Ta)-Rb (d)构造环境判别图解(据Pearce et al., 1984)

    Figure 13. 

    Tectonic setting discrimination diagrams of Yb vs. Ta (a), Y vs. Nb (b), Y+Nb vs. Rb (c) and Yb+Ta vs. Rb (d) for granitoids in Houdaomu (base map after Pearce et al., 1984)

    图 14 

    后倒木花岗质岩石的Rb/10-Hf-Ta×3 (a)和Rb/30-Hf-Ta×3 (b)构造环境判别图解(据Pearce et al., 1984)

    Figure 14. 

    Tectonic setting discrimination diagrams of Rb/10-Hf-Ta×3 (a) and Rb/30-Hf-Ta×3 (b) for granitoids in the Houdaomu (base map after Pearce et al., 1984)

    图 15 

    松辽地块东部花岗岩锆石(a, 据陈贤, 2018)和中国东北地区河流碎屑锆石(b, 据李明, 2010)Hf同位素二阶段模式年龄(tDM2)频谱图

    Figure 15. 

    Spectrum for Hf isotope two-stage model age (tDM2) of granite zircon in eastern Songliao block (a, after Chen, 2018) and of detrital zircons from rivers in Northeast China (b, after Li, 2010)

    表 1 

    后倒木花岗质岩石LA-ICP-MS锆石测年数据

    Table 1. 

    Zircon U-Pb isotope data of granitoids in the Houdaomu

    测点号 Th U Th/U 同位素比值 同位素年龄(Ma)
    (×10-6) 1σ 1σ 1σ 1σ 1σ 1σ
    HDM-N1花岗闪长岩
    1 76 191 0.40 0.05175 0.00173 0.19227 0.01148 0.02752 0.00037 271.7 79.8 178.9 9.6 175.2 3.2
    2 60 124 0.49 0.04957 0.00198 0.18980 0.00929 0.02747 0.00058 172.1 85.6 176.5 7.6 174.6 3.7
    3 65 155 0.42 0.05187 0.00384 0.19157 0.00867 0.02751 0.00047 267.6 152.3 177.6 7.2 174.7 3.0
    4 58 123 0.47 0.05058 0.00337 0.18987 0.00901 0.02747 0.00061 217.6 147.6 176.6 8.6 174.8 3.0
    5 60 159 0.38 0.04988 0.00246 0.18759 0.00999 0.02748 0.00050 157.6 117.6 174.6 9.0 174.8 3.4
    6 67 159 0.42 0.05024 0.00258 0.18969 0.01126 0.02750 0.00049 201.5 119.6 177.0 9.6 174.9 3.6
    7 62 138 0.45 0.05120 0.00266 0.19279 0.01026 0.02751 0.00056 253.5 115.3 179.6 9.0 175.1 3.4
    8 72 187 0.39 0.05026 0.00138 0.19128 0.00866 0.02753 0.00039 199.6 65.6 178.6 7.1 175.1 3.2
    9 75 176 0.43 0.04988 0.00246 0.18577 0.01025 0.02753 0.00050 158.6 107.7 173.6 8.6 175.1 3.2
    10 68 167 0.41 0.04988 0.00358 0.19276 0.00518 0.02750 0.00042 158.6 171.6 179.2 4.6 175.1 3.0
    11 67 157 0.43 0.05024 0.00287 0.18959 0.01094 0.02750 0.00055 207.6 117.6 176.0 8.6 174.7 3.2
    12 65 147 0.44 0.05118 0.00276 0.18756 0.01016 0.02749 0.00049 252.6 115.6 174.6 9.0 174.9 3.6
    13 67 157 0.43 0.05048 0.00178 0.18758 0.00986 0.02749 0.00056 209.7 79.5 174.6 7.9 175.0 3.1
    14 69 175 0.39 0.05076 0.00276 0.18968 0.01088 0.02752 0.00037 211.9 116.0 176.6 8.7 175.2 3.2
    15 59 187 0.32 0.05096 0.00258 0.19238 0.01069 0.02751 0.00049 211.9 117.6 179.9 8.6 175.1 3.0
    HDM-N2二长花岗岩
    1 59 129 0.45 0.05107 0.0025 0.18734 0.00935 0.02721 0.00047 243.8 112.8 174.4 8.0 173.0 3.0
    2 91 145 0.63 0.0491 0.00297 0.18327 0.01121 0.02721 0.00048 152.4 141.8 170.9 9.6 173.1 3.0
    3 107 174 0.62 0.04908 0.00241 0.18204 0.00873 0.02722 0.00043 151.4 115.1 169.8 7.5 173.1 2.7
    4 79 194 0.41 0.05047 0.0016 0.18774 0.00586 0.02722 0.00036 216.9 73.2 174.7 5.0 173.2 2.3
    5 60 139 0.43 0.05107 0.00209 0.18831 0.00746 0.02728 0.00044 243.9 94.1 175.2 6.4 173.5 2.7
    6 71 150 0.47 0.04887 0.00161 0.18305 0.00616 0.02728 0.00038 141.7 77.2 170.7 5.3 173.5 2.4
    7 128 319 0.40 0.05001 0.00135 0.18808 0.00532 0.02728 0.00037 195.4 62.8 175.0 4.5 173.5 2.3
    8 65 132 0.50 0.05036 0.00274 0.18739 0.00936 0.02729 0.00055 211.6 126.2 174.4 8.0 173.6 3.5
    9 61 125 0.49 0.05248 0.0047 0.188 0.01459 0.02735 0.0006 306.5 204.0 174.9 12.5 173.9 3.8
    10 61 125 0.49 0.04915 0.00298 0.18464 0.0113 0.02746 0.00059 155.1 142.0 172.0 9.7 174.6 3.7
    11 66 155 0.42 0.05164 0.00285 0.19372 0.01066 0.02747 0.00047 269.5 126.5 179.8 9.1 174.7 3.0
    12 59 124 0.47 0.05016 0.00237 0.18867 0.00901 0.02749 0.00047 202.5 109.7 175.5 7.7 174.8 3.0
    13 77 191 0.40 0.05108 0.00274 0.19373 0.01049 0.02754 0.00051 244.4 123.5 179.8 8.9 175.2 3.2
    14 47 105 0.45 0.05013 0.00519 0.19495 0.01915 0.02735 0.00066 208.1 186.7 197.7 16.0 173.9 4.1
    15 68 157 0.43 0.05199 0.00319 0.18717 0.00978 0.02712 0.00056 257.6 157.1 174.7 8.2 173.9 2.2
    HDM-N3正长花岗岩
    1 89 140 0.63 0.05160 0.00364 0.18246 0.01192 0.02646 0.00061 268.2 162.1 170.2 10.2 168.4 3.9
    2 90 201 0.45 0.05121 0.00249 0.18703 0.00911 0.02651 0.00048 250.7 112.0 174.1 7.8 168.7 3.0
    3 128 196 0.65 0.05374 0.00450 0.18949 0.01403 0.02663 0.00063 360.2 189.0 176.2 12.0 169.5 4.0
    4 113 172 0.65 0.05011 0.00246 0.18209 0.00849 0.02680 0.00042 200.4 114.0 169.9 7.3 170.5 2.7
    5 60 133 0.45 0.04951 0.00230 0.18052 0.00839 0.02688 0.00044 172.4 108.6 168.5 7.2 171.0 2.8
    6 79 117 0.67 0.04784 0.00309 0.17374 0.01133 0.02689 0.00060 91.6 153.1 162.7 9.8 171.1 3.8
    7 120 169 0.71 0.04977 0.00188 0.18279 0.00719 0.02695 0.00039 184.6 88.4 170.5 6.2 171.4 2.4
    8 88 196 0.45 0.05020 0.00233 0.18631 0.00909 0.02698 0.00040 204.6 107.8 173.5 7.8 171.7 2.5
    9 61 130 0.47 0.05057 0.00258 0.18404 0.00936 0.02700 0.00048 221.5 118.1 171.5 8.0 171.7 3.1
    10 61 129 0.47 0.04956 0.00439 0.17767 0.01441 0.02700 0.00071 174.5 206.8 166.1 12.4 171.8 4.5
    11 73 159 0.46 0.05121 0.00220 0.18736 0.00743 0.02702 0.00042 250.3 99.2 174.4 6.4 171.9 2.7
    12 76 162 0.47 0.05116 0.00209 0.18886 0.00778 0.02706 0.00041 248.3 94.3 175.7 6.6 172.2 2.6
    13 77 136 0.57 0.04929 0.00294 0.17992 0.00993 0.02707 0.00054 161.7 139.6 168.0 8.6 172.2 3.4
    14 116 171 0.68 0.04945 0.00218 0.18307 0.00809 0.02708 0.00037 169.3 103.2 170.7 6.9 172.3 2.3
    15 56 122 0.46 0.05177 0.00414 0.19039 0.01555 0.02710 0.00079 275.5 183.3 177.0 13.3 172.4 5.0
    16 57 118 0.48 0.05021 0.00250 0.18180 0.00900 0.02714 0.00047 204.7 115.6 169.6 7.7 172.7 3.0
    下载: 导出CSV

    表 2 

    后倒木花岗质岩石主量元素(wt%)、稀土和微量元素(×10-6)测试结果

    Table 2. 

    Major (wt%) and trace (×10-6) elements data of granitoids in the Houdaomu

    样品号 HDM-N1-Q1 -Q2 -Q3 -Q4 -Q5 -Q6 HDM-N2-Q1 -Q2 -Q3 -Q4 -Q5 HDM-N3-Q1 -Q2 -Q3 -Q4 -Q5 -Q6
    岩性 花岗闪长岩 二长花岗岩 正长花岗岩
    SiO2 67.02 68.17 66.58 67.68 67.27 67.63 69.85 70.73 71.61 70.64 70.42 75.71 76.57 75.95 76.08 76.21 76.73
    TiO2 0.47 0.45 0.49 0.41 0.53 0.41 0.36 0.35 0.35 0.37 0.35 0.07 0.06 0.08 0.06 0.08 0.07
    Al2O3 15.57 15.67 15.46 15.09 15.67 16.03 15.17 14.85 14.61 15.07 14.89 12.71 12.21 12.57 12.65 12.34 12.42
    Fe2O3 1.17 0.87 1.21 1.39 0.93 0.92 0.91 0.85 1.05 0.93 0.83 0.42 0.35 0.37 0.31 0.24 0.31
    FeO 2.65 2.16 2.95 2.75 2.65 2.57 1.32 1.12 1.12 1.37 1.07 0.98 1.15 0.95 1.17 1.01 0.99
    MnO 0.07 0.10 0.09 0.08 0.11 0.07 0.06 0.08 0.07 0.10 0.09 0.08 0.10 0.10 0.08 0.07 0.11
    MgO 2.05 2.07 1.97 1.82 2.05 1.82 0.51 0.57 0.49 0.59 0.52 0.09 0.11 0.11 0.10 0.09 0.11
    CaO 2.87 2.54 2.83 2.87 3.31 2.57 2.05 2.11 2.05 1.87 1.95 0.86 0.60 0.75 0.72 0.68 0.82
    Na2O 3.72 4.17 4.32 3.87 3.87 3.92 4.15 4.24 4.05 4.05 3.92 3.68 3.95 4.02 3.92 3.85 3.72
    K2O 2.57 2.52 3.04 2.97 2.67 3.07 4.05 3.87 3.85 3.91 4.68 3.85 3.95 4.12 4.15 4.01 3.87
    P2O5 0.11 0.11 0.12 0.12 0.11 0.12 0.12 0.13 0.12 0.13 0.13 0.01 0.03 0.02 0.03 0.01 0.01
    LOI 0.80 0.85 0.57 0.73 0.67 0.57 0.75 0.92 0.57 0.51 0.92 0.37 0.67 0.57 0.70 0.85 0.68
    Total 99.07 99.68 99.63 99.78 99.84 99.70 99.30 99.82 99.94 99.54 99.77 98.83 99.75 99.61 99.97 99.44 99.84
    La 12.17 18.57 17.25 16.37 17.05 15.27 21.87 30.27 28.57 22.71 26.27 16.87 17.51 17.28 16.98 17.05 17.31
    Ce 35.38 27.28 25.37 34.35 29.57 38.97 45.36 53.57 49.64 50.67 47.19 38.21 35.47 36.57 37.58 38.02 36.83
    Pr 4.78 3.02 4.25 3.65 3.96 4.15 6.45 5.03 6.02 5.75 5.32 4.80 4.45 4.57 4.65 4.75 4.58
    Nd 17.25 13.57 15.57 16.34 14.57 16.37 23.05 19.78 22.09 21.76 20.87 17.25 16.57 16.39 16.52 16.03 16.97
    Sm 2.87 2.57 2.14 2.25 2.96 2.78 3.70 3.28 3.54 3.65 3.33 3.08 3.52 3.33 3.47 3.28 3.48
    Eu 0.82 0.67 0.75 0.79 0.80 0.70 0.61 0.51 0.56 0.60 0.57 0.24 0.28 0.27 0.26 0.25 0.27
    Gd 2.56 1.87 1.98 2.02 2.42 2.24 2.15 2.89 2.54 2.22 2.76 2.25 2.85 2.76 2.65 2.57 2.35
    Tb 0.33 0.31 0.26 0.29 0.30 0.31 0.29 0.31 0.32 0.31 0.30 0.31 0.42 0.40 0.36 0.37 0.38
    Dy 1.45 1.89 1.65 1.75 1.52 1.49 1.49 1.57 1.52 1.50 1.56 2.15 1.79 1.86 1.97 2.05 2.63
    Ho 0.29 0.37 0.35 0.32 0.34 0.31 0.26 0.27 0.27 0.26 0.27 0.35 0.48 0.45 0.42 0.40 0.37
    Er 0.79 1.00 0.86 0.98 1.00 0.96 0.70 0.73 0.74 0.75 0.72 0.87 1.32 1.25 1.11 1.05 0.95
    Tm 0.12 0.15 0.13 0.14 0.15 0.14 0.09 0.10 0.09 0.10 0.09 0.15 0.22 0.20 0.19 0.17 0.20
    Yb 0.75 1.00 0.98 0.85 0.86 0.96 0.64 0.65 0.64 0.66 0.65 0.86 0.98 1.30 1.12 1.02 1.15
    Lu 0.15 0.11 0.13 0.12 0.14 0.15 0.09 0.09 0.10 0.10 0.09 0.17 0.25 0.22 0.19 0.21 0.22
    ∑REE 80.7 72.1 72.7 80.5 76.1 85.7 107.2 119.5 117.8 111.5 110.7 88.5 86.1 87.5 88.2 87.7 88.1
    δEu 0.93 0.94 1.12 1.14 0.92 0.86 0.66 0.51 0.58 0.65 0.57 0.29 0.27 0.28 0.27 0.27 0.30
    (La/Yb)N 11.5 13.3 12.6 13.7 14.1 11.3 24.3 33.3 31.6 24.3 28.8 14.0 12.8 9.5 10.8 11.9 10.7
    Ti 2857 2982 3125 2875 3257 2987 2238 2229 2368 2403 2298 458.3 487.5 475.3 467.2 478.3 468.9
    Zn 157.6 68.26 98.26 117.9 158.3 98.25 51.51 82.87 75.56 65.71 68.24 45.67 62.32 57.35 58.39 51.67 60.35
    Ga 20.25 19.25 18.65 20.35 21.05 19.35 20.07 22.91 21.05 22.09 21.79 16.98 18.05 17.89 17.65 17.29 16.83
    Rb 75.36 65.36 38.25 45.35 68.37 42.35 87.58 135.4 125.2 107.3 98.37 147.5 180.5 175.7 168.2 159.3 178.9
    Sr 75.98 81.98 87.26 78.25 74.29 87.29 45.67 50.57 55.87 49.68 57.28 35.57 41.58 40.76 37.86 36.79 39.75
    Y 10.25 9.28 7.29 8.75 9.67 7.76 6.72 7.18 7.57 6.97 7.52 12.57 7.86 8.67 9.37 8.27 11.57
    Zr 98.2 110.5 93.5 102.5 87.2 108.7 147.8 237.9 220.6 201.7 187.5 85.6 128.5 98.5 117.8 105.8 115.7
    Nb 3.58 4.75 4.57 3.86 4.02 4.57 7.70 8.25 9.05 7.95 8.57 10.57 7.58 8.57 9.37 10.08 9.37
    Ba 598.2 602.3 487.2 395.2 547.3 475.2 578.5 605.7 684.5 621.7 697.5 170.5 165.2 157.5 159.6 162.8 158.8
    Hf 3.72 5.87 4.35 3.89 4.57 5.35 5.65 7.02 7.32 6.68 6.57 3.57 5.02 4.25 3.95 4.75 4.35
    Ta 0.33 0.53 0.45 0.47 0.49 0.42 0.65 0.70 0.66 0.68 0.68 0.58 0.68 0.70 0.59 0.65 0.61
    Th 3.72 8.02 7.25 6.35 5.24 4.25 8.78 11.05 10.65 9.59 10.57 15.85 18.03 17.65 16.52 17.2 16.71
    U 2.02 2.57 2.35 2.46 2.27 2.18 2.98 3.95 3.25 3.68 4.02 3.85 5.57 6.23 7.58 5.35 5.95
    下载: 导出CSV

    表 3 

    后倒木花岗质岩石中锆石的Hf同位素组成

    Table 3. 

    Zircon Hf isotopic compositions of granitoids in the Houdaomu

    测点号 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ t(Ma) εHf(t) tDM2 (Ma) fLu/Hf
    HDM-N1花岗闪长岩
    1 0.017280 0.000561 0.000547 0.000021 0.282875 0.000015 7.4 634 -0.98
    2 0.013441 0.000177 0.000434 0.000010 0.282904 0.000014 8.5 580 -0.99
    3 0.016786 0.000207 0.000553 0.000010 0.282864 0.000015 7.1 653 -0.98
    4 0.021081 0.000292 0.000701 0.000005 0.282919 0.000017 9.0 554 -0.98
    5 0.018066 0.000339 0.000618 0.000019 0.282889 0.000016 7.9 609 -0.98
    6 0.018298 0.000432 0.000558 0.000012 0.282907 0.000014 8.6 575 -0.98
    7 0.018196 0.000110 0.000599 0.000006 0.282854 0.000014 6.7 672 -0.98
    8 0.022268 0.000539 0.000711 0.000009 0.282881 0.000016 175 7.6 623 -0.98
    9 0.020327 0.000148 0.000681 0.000010 0.282872 0.000018 7.3 640 -0.98
    10 0.018861 0.000207 0.000603 0.000012 0.282885 0.000015 7.8 615 -0.98
    11 0.022599 0.000369 0.000726 0.000018 0.282903 0.000015 8.4 584 -0.98
    12 0.024459 0.000906 0.000793 0.000020 0.282896 0.000014 8.1 598 -0.98
    13 0.056960 0.001325 0.001714 0.000021 0.282784 0.000015 4.1 806 -0.95
    14 0.017273 0.000586 0.000539 0.000012 0.282894 0.000015 8.1 599 -0.98
    15 0.028054 0.000508 0.000893 0.000009 0.282886 0.000016 7.8 616 -0.97
    HDM-N2二长花岗岩
    1 0.017751 0.000706 0.000600 0.000017 0.282902 0.000020 8.3 586 -0.98
    2 0.031521 0.000299 0.000945 0.000009 0.282863 0.000014 6.9 658 -0.97
    3 0.029870 0.000459 0.000893 0.000009 0.282877 0.000015 7.4 633 -0.97
    4 0.019215 0.000322 0.000630 0.000006 0.282865 0.000014 7.0 653 -0.98
    5 0.020865 0.000890 0.000650 0.000022 0.282911 0.000016 8.6 569 -0.98
    6 0.040067 0.000224 0.001213 0.000006 0.282871 0.000016 7.2 646 -0.96
    7 0.027375 0.000509 0.000840 0.000013 0.282884 0.000016 7.7 619 -0.97
    8 0.025043 0.000437 0.000795 0.000016 0.282855 0.000016 173 6.6 673 -0.98
    9 0.024137 0.000347 0.000781 0.000017 0.282855 0.000015 6.7 671 -0.98
    10 0.020681 0.000113 0.000696 0.000007 0.282904 0.000015 8.4 583 -0.98
    11 0.024686 0.000936 0.000753 0.000018 0.282867 0.000015 7.1 651 -0.98
    12 0.026996 0.000248 0.000830 0.000006 0.282870 0.000016 7.2 645 -0.98
    13 0.020894 0.000131 0.000695 0.000011 0.282870 0.000013 7.2 645 -0.98
    14 0.023981 0.000139 0.000735 0.000007 0.282875 0.000014 7.4 635 -0.98
    15 0.028356 0.000592 0.000870 0.000008 0.282874 0.000015 7.3 637 -0.97
    HDM-N3正长花岗岩
    1 0.020549 0.000251 0.000649 0.000007 0.282872 0.000014 7.2 641 -0.98
    2 0.018243 0.000231 0.000612 0.000016 0.282877 0.000014 7.4 632 -0.98
    3 0.020553 0.000121 0.000653 0.000010 0.282891 0.000015 7.9 606 -0.98
    4 0.022328 0.000530 0.000687 0.000019 0.282884 0.000016 7.6 619 -0.98
    5 0.020017 0.000381 0.000664 0.000020 0.282893 0.000015 8.0 602 -0.98
    6 0.018902 0.000191 0.000624 0.000011 0.282882 0.000013 7.6 622 -0.98
    7 0.018983 0.000419 0.000635 0.000007 0.282878 0.000017 7.4 631 -0.98
    8 0.019030 0.000195 0.000615 0.000008 0.282866 0.000016 171 7.0 652 -0.98
    9 0.014267 0.000232 0.000465 0.000003 0.282918 0.000015 8.9 556 -0.99
    10 0.014181 0.000249 0.000438 0.000011 0.282904 0.000014 8.4 581 -0.99
    11 0.038796 0.000278 0.001275 0.000017 0.282883 0.000016 7.6 624 -0.96
    12 0.017600 0.000177 0.000547 0.000010 0.282896 0.000014 8.1 597 -0.98
    13 0.019199 0.000242 0.000593 0.000011 0.282894 0.000017 8.0 600 -0.98
    14 0.015228 0.000394 0.000469 0.000008 0.282915 0.000015 8.7 562 -0.99
    15 0.014193 0.000458 0.000440 0.000009 0.282895 0.000016 8.1 597 -0.99
    16 0.019872 0.000192 0.000579 0.000008 0.282892 0.000015 7.9 604 -0.98
    下载: 导出CSV

    表 4 

    后倒木花岗质岩石Sr-Nd同位素组成

    Table 4. 

    Sr-Nd isotopic compositions of granitoids in the Houdaomu

    样品号 Age Rb Sr 2σ Sm Nd 2σ ISr εNd(t) tDM2
    (Ma) (×10-6) (×10-6) (Ma)
    HDM-N1-Q1 175 70.58 51.22 3.987 0.716875 0.000005 2.20 11.30 0.117633 0.512697 0.000005 0.706954 2.92 724
    HDM-N1-Q2 175 61.79 47.92 3.731 0.716157 0.000007 1.92 11.17 0.103856 0.512685 0.000007 0.706874 2.99 718
    HDM-N1-Q3 175 37.71 45.31 2.408 0.712983 0.000007 2.07 15.02 0.083269 0.512708 0.000006 0.706991 3.90 644
    HDM-N1-Q4 175 43.95 48.57 2.618 0.712992 0.000005 2.21 16.09 0.082989 0.512671 0.000007 0.706477 3.19 702
    HDM-N1-Q5 175 67.82 55.72 3.522 0.715082 0.000006 2.15 14.01 0.092722 0.512692 0.000005 0.706319 3.38 686
    HDM-N1-Q6 175 41.02 55.99 2.120 0.712005 0.000005 2.02 15.58 0.078337 0.512705 0.000007 0.706730 3.95 639
    HDM-N2-Q1 173 81.72 37.71 6.271 0.722005 0.000005 3.39 21.52 0.095179 0.512685 0.000007 0.706582 3.19 702
    HDM-N2-Q2 173 75.71 42.75 5.125 0.719879 0.000007 3.01 18.05 0.100757 0.512705 0.000005 0.707275 3.45 680
    HDM-N2-Q3 173 72.82 38.67 5.449 0.720089 0.000006 3.51 21.17 0.100178 0.512692 0.000001 0.706687 3.21 700
    HDM-N2-Q4 173 78.89 41.85 5.455 0.720978 0.000005 3.58 20.51 0.105493 0.512672 0.000007 0.707562 2.70 741
    HDM-N2-Q5 173 82.57 39.91 5.987 0.721982 0.000007 3.07 20.05 0.092514 0.512702 0.000005 0.707257 3.58 670
    HDM-N3-Q1 171 57.65 30.82 5.413 0.719875 0.000005 3.01 17.02 0.106854 0.512657 0.000008 0.706716 2.38 768
    HDM-N3-Q2 171 51.57 31.17 4.787 0.719017 0.000007 2.31 16.57 0.084231 0.512669 0.000007 0.707378 3.11 708
    HDM-N3-Q3 171 47.73 32.92 4.195 0.717982 0.000007 3.01 16.32 0.111437 0.512702 0.000005 0.707782 3.15 704
    HDM-N3-Q4 171 41.07 30.57 3.887 0.717015 0.000005 3.07 16.52 0.112283 0.512689 0.000007 0.707564 2.88 727
    HDM-N3-Q5 171 45.72 32.15 4.115 0.717057 0.000007 3.08 16.01 0.116237 0.512675 0.000005 0.707053 2.52 756
    HDM-N3-Q6 171 50.07 30.02 4.826 0.719005 0.000005 3.02 16.92 0.107843 0.512682 0.000007 0.707272 2.84 730
    注:(87Sr/86Sr)CHUR=0.7045,(87Rb/86Sr)CHUR=0.0827,λRb=0.0142Ga-1,(143Nd/144Nd)CHUR=0.5126,(147Sm/144Nd)CHUR=0.1967,(143Nd/144Nd)DM=0.5132,(147Sm/144Nd)DM=0.2137,λSr=0.0065Ga-1(Hart, 1984),fSm/Nd=(147Sm/144Nd)s/(147Sm/144Nd)CHUR-1,s代表样品
    下载: 导出CSV
  •  

    Allègre CJ and Jaupart C. 1985. Continental tectonics and continental kinetics. Earth and Planetary Science Letters, 74(2-3): 171-186 doi: 10.1016/0012-821X(85)90020-2

     

    Amelin Y, Lee DC and Halliday AN. 2000. Early-Middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta, 64(24): 4205-4225 doi: 10.1016/S0016-7037(00)00493-2

     

    Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79 doi: 10.1016/S0009-2541(02)00195-X

     

    Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3): 605-626 doi: 10.1016/S0024-4937(98)00085-1

     

    Belousova E, Griffin W, O'Reilly SY and Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622 doi: 10.1007/s00410-002-0364-7

     

    Boztuǧ D, Harlavan Y, Arehart GB, Satır M and Avcı N. 2007. K-Ar age, whole-rock and isotope geochemistry of A-type granitoids in the Divriǧi-Sivas region, eastern-central Anatolia, Turkey. Lithos, 97(1-2): 193-218 doi: 10.1016/j.lithos.2006.12.014

     

    Chappell BW and White AJR. 1974. Two contrasting granite types. Pacific Geology, 8: 173-174

     

    Chappell BW and White AJR. 1991. Restite enclaves and the restite model. In: Didier J and Barbarin B (eds. ). Enclaves and Granite Petrology. Amsterdam: Elsevier, 375-381

     

    Chappell BW. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551 doi: 10.1016/S0024-4937(98)00086-3

     

    Chappell BW, Bryant CJ and Wyborn D. 2012. Peraluminous I-type granites. Lithos, 153: 142-153 doi: 10.1016/j.lithos.2012.07.008

     

    Chen X. 2018. Crustal growth and mineralization of the granitoids in the eastern Songliao Massif, NE China. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing), 1-183 (in Chinese with English summary)

     

    Ge MH, Zhang JJ, Li L, Liu K, Ling YY and Wang JM. 2017. Geochronology and geochemistry of the Heilongjiang complex and the granitoids from the Lesser Xing'an-Zhangguangcai Range: Implications for the Late Paleozoic-Mesozoic tectonics of eastern NE China. Tectonophysics, 717: 565-584 doi: 10.1016/j.tecto.2017.09.004

     

    Ge WC, Wu FY, Zhou CY and Zhang JH. 2007. Porphyry Cu-Mo deposits in the eastern Xing'an-Mongolian Orogenic Belt: Mineralization ages and their geodynamic implications. Chinese Science Bulletin, 52(20): 2407-2417 (in Chinese) doi: 10.1360/csb2007-52-20-2407

     

    Griffin WL, Pearson NJ, Belousova E, Jackson SE, Van Achterbergh E, O'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147 doi: 10.1016/S0016-7037(99)00343-9

     

    Griffin WL, Belousova EA, Shee SR, Pearson NJ and O'Reilly SY. 2004. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 131(3-4): 231-282 doi: 10.1016/j.precamres.2003.12.011

     

    Hart SR. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309(5971): 753-757 doi: 10.1038/309753a0

     

    Hawkesworth CJ and Kemp AIS. 2006. Evolution of the continental crust. Nature, 443(7113): 811-817 doi: 10.1038/nature05191

     

    He YS, Li SG, Hoefs J, Huang F, Liu SA and Hou ZH. 2011. Post-collisional granitoids from the Dabie orogen: New evidence for partial melting of a thickened continental crust. Geochimica et Cosmochimica Acta, 75(13): 3815-3838 doi: 10.1016/j.gca.2011.04.011

     

    Hong DW, Zhang JS, Wang T, Wang SG and Xie XL. 2004. Continental crustal growth and the supercontinental cycle: Evidence from the Central Asian orogenic belt. Journal of Asian Earth Sciences, 23(5): 799-813 doi: 10.1016/S1367-9120(03)00134-2

     

    Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62 doi: 10.2113/0530027

     

    Jahn BM, Wu FY, Lo CH and Tsai CH. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 365(1-2): 119-146 http://www.sciencedirect.com/science/article/pii/S0009254198001971

     

    Jahn BM, Griffin WL and Windley B. 2000a. Continental growth in the Phanerozoic: Evidence from Central Asia. Tectonophysics, 328(1-2): vii-x doi: 10.1016/S0040-1951(00)00174-8

     

    Jahn BM, Wu FY and Chen B. 2000b. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 91(1-2): 181-193 doi: 10.1017/S0263593300007367

     

    Jahn BM, Wu FY and Hong DW. 2000c. Important crustal growth in the Phanerozoic: Isotopic evidence of granitoids from east-central Asia. Journal of Earth System Science, 109(1): 5-20 doi: 10.1007/BF02719146

     

    Jahn BM. 2004. The central Asian orogenic belt and growth of the continental crust in the Phanerozoic. Geological Society, London, Special Publications, 226: 73-100 doi: 10.1144/GSL.SP.2004.226.01.05

     

    Ju N. 2020. Metallogenic regularity and prospective prediction of porphyry molybdenum deposits in central Jilin Province, NE China. Ph. D. Dissertation. Changchun: Jilin University, 1-115 (in Chinese with English abstract)

     

    Kinny PD and Maas R. 2003. Lu-Hf and Sm-Nd isotope systems in zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327-341 doi: 10.2113/0530327

     

    Klimm K, Holtz F and King PL. 2008. Fractionation vs. magma mixing in the Wangrah Suite A-type granites, Lachlan Fold Belt, Australia: Experimental constraints. Lithos, 102(3-4): 415-434

     

    Koschek G. 1993. Origin and significance of the SEM cathodoluminescence from zircon. Journal of Microscopy, 171(3): 223-232 doi: 10.1111/j.1365-2818.1993.tb03379.x

     

    Kröner A, Kovach V, Belousova E, Hegner E, Armstrong R, Dolgopolova A, Seltmann R, Alexeiev DV, Hoffmann JE, Wong J, Sun M, Cai K, Wang T, Tong Y, Wilde SA, Degtyarev KE and Rytsk E. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Research, 25(1): 103-125 doi: 10.1016/j.gr.2012.12.023

     

    Kröner A, Kovach V, Alexeiev D, Wang KL, Wong J, Degtyarev K and Kozakov I. 2017. No excessive crustal growth in the Central Asian Orogenic Belt: Further evidence from field relationships and isotopic data. Gondwana Research, 50: 135-166 doi: 10.1016/j.gr.2017.04.006

     

    Li JY. 1998. Some new ideas on tectonics of NE China and its neighboring areas. Geological Review, 44(4): 339-347 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199804001.htm

     

    Li JY. 2006. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3-4): 207-224 doi: 10.1016/j.jseaes.2005.09.001

     

    Li M. 2010. Crustal growth and evolution of Northeastern China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers. Ph. D. Dissertation. Wuhan: China University of Geosciences (Wuhan), 1-175 (in Chinese with English summary)

     

    Li XH, Li WX and Li ZH. 2007. On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(14): 1873-1885 doi: 10.1007/s11434-007-0259-0

     

    Li Y, Xu WL, Wang F, Tang J, Sun CY and Wang ZJ. 2018. Early-Middle Ordovician volcanism along the eastern margin of the Xing'an Massif, Northeast China: Constraints on the suture location between the Xing'an and Songnen-Zhangguangcai Range massifs. International Geology Review, 60(16): 2046-2062 doi: 10.1080/00206814.2017.1402378

     

    Liu SA, Li SG, He YS and Huang F. 2010. Geochemical contrasts between Early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: Implications for petrogenesis and Cu-Au mineralization. Geochimica et Cosmochimica Acta, 74(24): 7160-7178 doi: 10.1016/j.gca.2010.09.003

     

    Liu WZ, Sun FY, Huang WP, Wang LL, Su B and Huan FM. 2014. Zircon U-Pb ages and petrochemical characteristics of Bangzishan granite in Fu'anpu of Jilin and their geological significance. Global Geology, 33(2): 289-298 (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-SJDZ201402005.htm

     

    Ludwig KR. 2003. User's manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Geochronology Center Special Publication

     

    Macdonald R, Rogers NW, Bagiński B and Dzierzanowski P. 2010. Distribution of gallium between phenocrysts and melt in peralkaline salic volcanic rocks, Kenya Rift Valley. Mineralogical Magazine, 74(2): 351-363 doi: 10.1180/minmag.2010.074.2.351

     

    Miao LC, Fan WM, Zhang FQ, Liu DY, Jian P, Shi GH, Tao H and Shi YR. 2003. Zircon SHRIMP geochronology of the Xinkailing-Kele complex in the northwestern Lesser Xing'an Range, and its geological implications. Chinese Science Bulletin, 48(22): 2315-2323 (in Chinese) doi: 10.1360/csb2003-48-22-2315

     

    Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215-224 doi: 10.1016/0012-8252(94)90029-9

     

    Miller CF. 1985. Are strongly peraluminous magmas derived from pelitic sedimentary sources? The Journal of Geology, 93(6): 673-689 doi: 10.1086/628995

     

    Morrison GW. 1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 13(1): 97-108 doi: 10.1016/0024-4937(80)90067-5

     

    Nabelek PI, Liu M and Sirbescu ML. 2001. Thermo-rheological, shear heating model for leucogranite generation, metamorphism, and deformation during the Proterozoic Trans-Hudson orogeny, Black Hills, South Dakota. Tectonophysics, 342(3-4): 371-388 doi: 10.1016/S0040-1951(01)00171-8

     

    Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25: 956-983 doi: 10.1093/petrology/25.4.956

     

    Polat A. 2012. Growth of Archean continental crust in oceanic island arcs. Geology, 40(4): 383-384 doi: 10.1130/focus042012.1

     

    Rudnick RL. 1995. Making continental crust. Nature, 378(6557): 571-578 doi: 10.1038/378571a0

     

    Şengör AMC, Natal'in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307 doi: 10.1038/364299a0

     

    Şengör AMC and Natal'in BA. 1996. Paleotectonics of Asia: Fragments of a synthesis. In: Yin A and Harrison M (eds. ). The Tectonic Evolution of Asia. London: Cambridge University Press, 486-640

     

    Shao JA, Hong DW and Zhang LQ. 2002. Genesis of Sr-Nd isotopic characteristics of igneous rocks in Inner Mongolia. Geological Bulletin of China, 21(12): 817-822 (in Chinese with English abstract)

     

    Streckeisen AL. 1976. Classification of the common igneous rocks by means of their chemical composition: A provisional attempt. Neues Jahrbuch fur Mineralogie, Monatshefte, 1: 1-15 http://www.researchgate.net/publication/309050540_Classification_of_common_igneous_rocks_by_means_of_their_chemical_composition_A_provisional_attempt

     

    Sui ZM, Ge WC, Wu FY, Zhang JH, Xu XC and Cheng RY. 2007. Zircon U-Pb ages, geochemistry and its petrogenesis of Jurassic granites in northeastern part of the Da Hinggan Mts. Acta Petrologica Sinica, 23(2): 461-480 (in Chinese with English abstract) http://www.researchgate.net/publication/279674342_Zircon_U-Pb_ages_geochemistry_and_its_petrogenesis_of_Jurassic_granites_in_northeastern_part_of_the_Da_Hinggan_Mts

     

    Sun CY, Tang J, Xu WL, Li Y and Zhao S. 2017. Crustal accretion and reworking processes of micro-continental massifs within orogenic belt: A case study of the Erguna Massif, NE China. Science China (Earth Sciences), 60(7): 1256-1267 doi: 10.1007/s11430-016-9033-5

     

    Sun DY, Wu FY, Lin Q and Lu XP. 2001. Petrogenesis and crust-mantle interaction of Early Yanshanian Baishishan pluton in Zhangguangcai Range. Acta Petrologica Sinica, 17(2): 227-235 (in Chinese with English abstract)

     

    Sun DY, Wu FY, Gao S and Lu XP. 2005. Confirmation of two episodes of A-type granite emplacement during Late Triassic and Early Jurassic in the central Jilin Province, and their constraints on the structural pattern of eastern Jilin-Heilongjiang area, China. Earth Science Frontiers, 12(2): 263-275 (in Chinese with English abstract)

     

    Sun JG, Zhang Y, Xing SW, Zhao KQ, Zhang ZJ, Bai LA, Ma YB and Liu YS. 2012. Genetic types, ore-forming age and geodynamic setting of endogenic molybdenum deposits in the eastern edge of Xing-Meng orogenic belt. Acta Petrologica Sinica, 28(4): 1317-1332 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201204028.htm

     

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sanders AD and Norry MJ (eds. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345

     

    Tang J, Xu WL, Wang F, Wang W, Xu MJ and Zhang YH. 2014. Geochronology and geochemistry of Early-Middle Triassic magmatism in the Erguna Massif, NE China: Constraints on the tectonic evolution of the Mongol-Okhotsk Ocean. Lithos, 184-187: 1-16 doi: 10.1016/j.lithos.2013.10.024

     

    Tang J, Xu WL, Wang F, Zhao S and Wang W. 2016. Early Mesozoic southward subduction history of the Mongol-Okhotsk Oceanic Plate: Evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China. Gondwana Research, 31: 218-240 doi: 10.1016/j.gr.2014.12.010

     

    Vervoort JD, Patchett PJ, Gehrels GE and Nutman AP. 1996. Constraints on early earth differentiation from hafnium and neodymium isotopes. Nature, 379(6566): 624-627 doi: 10.1038/379624a0

     

    Vervoort JD, Patchett PJ, Albarède F, Blichert-Toft J, Rudnick R and Downes H. 2000. Hf-Nd isotopic evolution of the lower crust. Earth and Planetary Science Letters, 181(1-2): 115-129 doi: 10.1016/S0012-821X(00)00170-9

     

    Vervoort JD and Kemp AIS. 2016. Clarifying the zircon Hf isotope record of crust-mantle evolution. Chemical Geology, 425: 65-75 doi: 10.1016/j.chemgeo.2016.01.023

     

    Wang F, Xu WL, Gao FH, Meng E, Cao HH, Zhao L and Yang Y. 2012a. Tectonic history of the Zhangguangcailing Group in eastern Heilongjiang Province, NE China: Constraints from U-Pb geochronology of detrital and magmatic zircons. Tectonophysics, 566-567: 105-122 http://www.sciencedirect.com/science/article/pii/S0040195112004362

     

    Wang F, Xu WL, Meng E, Cao HH and Gao FH. 2012b. Early Paleozoic amalgamation of the Songnen-Zhangguangcai Range and Jiamusi massifs in the eastern segment of the Central Asian Orogenic Belt: Geochronological and geochemical evidence from granitoids and rhyolites. Journal of Asian Earth Sciences, 49: 234-248 doi: 10.1016/j.jseaes.2011.09.022

     

    Wang LL. 2018. Study on metallogenesis of porphyry deposits in Lesser Xing'an range and its adjacent areas, NE China. Ph. D. Dissertation. Changchun: Jilin University, 1-165(in Chinese with English summary)

     

    Wang ZW, Xu WL, Pei FP, Wang F and Guo P. 2016. Geochronology and geochemistry of Early Paleozoic igneous rocks of the Lesser Xing'an Range, NE China: Implications for the tectonic evolution of the eastern Central Asian Orogenic Belt. Lithos, 261: 144-163 doi: 10.1016/j.lithos.2015.11.006

     

    Wang ZW. 2017. Petrology and geochemistry of Early Paleozoic igneous rocks in the Lesser Xing'an-Zhangguangcai ranges: Constrains on the amalgamation history and crustal nature of the massifs. Ph. D. Dissertation. Changchun: Jilin University, 1-177 (in Chinese with English summary)

     

    Whalen JB, Currie KL and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419 doi: 10.1007/BF00402202

     

    Windley BF, Alexeiev D, Xiao WJ, Kröner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47 doi: 10.1144/0016-76492006-022

     

    Wu FY and Cao L. 1999. Some important problems of geology in northeastern Asia. World Geology, 18(2): 1-13 (in Chinese with English abstract) http://www.researchgate.net/publication/288260999_Some_important_problems_of_geology_in_northeastern_Asia

     

    Wu FY and Sun DY. 1999. The Mesozoic magmatism and lithospheric thinning in eastern China. Journal of Changchun University of Science and Technology, (4): 313-318 (in Chinese with English abstract) http://search.cnki.net/down/default.aspx?filename=CCDZ199904000&dbcode=CJFD&year=1999&dflag=pdfdown

     

    Wu FY, Sun DY and Lin Q. 1999. Petrogenesis of the Phanerozoic granites and crustal growth in Northeast China. Acta Petrologica Sinica, 15(2): 181-189 (in Chinese with English abstract)

     

    Wu FY, Jahn BM, Wilde S and Sun DY. 2000. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328(1-2): 89-113 doi: 10.1016/S0040-1951(00)00179-7

     

    Wu FY, Sun DY and Li HM. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1-2): 143-173 doi: 10.1016/S0009-2541(02)00018-9

     

    Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC and Sun DY. 2003. Highly fractionated I-type granites in NE China (Ⅰ): Geochronology and petrogenesis. Lithos, 66(3-4): 241-273 doi: 10.1016/S0024-4937(02)00222-0

     

    Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126 doi: 10.1016/j.chemgeo.2006.05.003

     

    Wu FY, Yang JH and Lo CH. 2007. The Heilongjiang Group: A Jurassic accretionary complex in the Jiamusi Massif at the Western Pacific margin of northeastern China. The Island Arc, 16(1): 156-172 doi: 10.1111/j.1440-1738.2007.00564.x

     

    Wu FY, Li ZH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract) http://www.oalib.com/paper/1492671

     

    Wu FY, Sun DY and Ge WC. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30 doi: 10.1016/j.jseaes.2010.11.014

     

    Wyllie PJ. 1984. Constraints imposed by experimental petrology on possible and impossible magma sources and products. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 310(1514): 439-456 http://rsta.royalsocietypublishing.org/content/310/1514/439.abstract

     

    Xiao WJ, Windley BF, Huang BC, Han CM, Yuan C, Chen HL, Sun M, Sun S and Li JL. 2009. End-Permian to Mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189-1217 doi: 10.1007/s00531-008-0407-z

     

    Xu WL, Ji WQ, Pei FP, Meng E, Yu Y, Yang DB and Zhang XZ. 2009. Triassic volcanism in eastern Heilongjiang and Jilin provinces, NE China: Chronology, geochemistry, and tectonic implications. Journal of Asian Earth Sciences, 34(3): 392-402 doi: 10.1016/j.jseaes.2008.07.001

     

    Xu WL, Pei FP, Wang F, Meng E, Ji WQ, Yang DB and Wang W. 2013. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes. Journal of Asian Earth Sciences, 74: 167-193 doi: 10.1016/j.jseaes.2013.04.003

     

    Xu WL, Sun CY, Tang J, Luan JP and Wang F. 2019. Basement nature and tectonic evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646 (in Chinese with English abstract)

     

    Yang BS, Chen GK, Yang DJ, Jia HB, Li ZQ and Yang ZL. 2011. Geological characteristics of Houdaomu molybdenum deposit. Jilin Geology, 30(1): 70-74 (in Chinese with English abstract)

     

    Yang JH, Wu FY and Wilde SA. 2007. Tracing magma mixing in granite genesis: in situ U-Pb dating and Hf-isotope analysis of zircons. Contributions to Mineralogy and Petrology, 153: 177-190 http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CPFD&filename=DZDQ200702001075

     

    Yang QD, Wang T, Guo L, Tong Y, Zhang L, Zhang JJ and Hou ZQ. 2017. Nd isotopic variation of Paleozoic-Mesozoic granitoids from the Da Hinggan Mountains and adjacent areas, NE Asia: Implications for the architecture and growth of continental crust. Lithos, 272-273: 164-184 doi: 10.1016/j.lithos.2016.11.015

     

    Yang XM, Lentz DR, Chi GX and Thorne KG. 2008. Geochemical characteristics of gold-related granitoids in southwestern New Brunswick, Canada. Lithos, 104(1-4): 355-377 doi: 10.1016/j.lithos.2008.01.002

     

    Yu XF, Hou ZQ, Qian Y and Li BL. 2012. Ore-forming fluids, stable isotopes and metallogenic epoch of the Fu'anpu molybdenum deposit in middle-eastern Jilin Province. Geology and Exploration, 48(6): 1151-1162 (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DZKT201206013.htm

     

    Yuan HL, Gao S, Liu XM, Li HM, Günther D and Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370 doi: 10.1111/j.1751-908X.2004.tb00755.x

     

    Zen E. 1986. Aluminum enrichment in silicate melts by fractional crystallization: Some mineralogic and petrographic constraints. Journal of Petrology, 27(5): 1095-1117 doi: 10.1093/petrology/27.5.1095

     

    Zeng QD, Liu JM, Qin F and Zhang ZL. 2010. Geochronology of the Xiaodonggou porphyry Mo deposit in northern margin of North China Craton. Resource Geology, 60(2): 192-202 doi: 10.1111/j.1751-3928.2010.00125.x

     

    Zeng QD, Liu JM, Zhang ZL, Chen WJ and Zhang WQ. 2011. Geology and geochronology of the Xilamulun molybdenum metallogenic belt in eastern Inner Mongolia, China. International Journal of Earth Sciences, 100(8): 1791-1809 doi: 10.1007/s00531-010-0617-z

     

    Zeng QD, Liu JM, Chu SX, Wang YB, Sun Y, Duan XX and Zhou LL. 2012. Mesozoic molybdenum deposits in the East Xingmeng orogenic belt, Northeast China: Characteristics and tectonic setting. International Geology Review, 54(16): 1843-1869 doi: 10.1080/00206814.2012.677498

     

    Zhang HH, Xu WL, Wang F and Cao HH. 2016. Formation timing of the volcanic rocks from the Xiaofengmidingzi Formation in Central Jilin Province and its geological implications: Evidence from zircon U-Pb dating and Hf isotope compositions. Journal of Jilin University (Earth Science Edition), 46(5): 1418-1429 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201605013.htm

     

    Zhang Y. 2013. Research on characteristics of geology, geochemistry and metallogenic mechanism of the Jurassic molybdenum deposits in the middle-eastern area of Jilin. Ph. D. Dissertation. Changchun: Jilin University, 1-144 (in Chinese with English summary)

     

    Zhang Y, Sun JG, Chen YJ, Zhao KQ and Gu AL. 2013. Re-Os and U-Pb geochronology of porphyry Mo deposits in central Jilin Province: Mo ore-forming stages in Northeast China. International Geology Review, 55(14): 1763-1785 doi: 10.1080/00206814.2013.794915

     

    Zhang YB, Wu FY, Wilde SA, Zhai MG, Lu XP and Sun DY. 2004. Zircon U-Pb ages and tectonic implications of 'Early Paleozoic' granitoids at Yanbian, Jilin Province, Northeast China. Island Arc, 13(4): 484-505 doi: 10.1111/j.1440-1738.2004.00442.x

     

    Zheng W, Chen MH, Zhao HJ, Zhao CS, Hou KJ, Liu JX, Li XM and Chang LZ. 2013. Zircon U-Pb geochronological and Hf isotopic constraints on petrogenesis of Yingwuling tungsten polymetallic deposit in Guangdong Province and its geological significance. Acta Petrologica Sinica, 29(12): 4121-4135 (in Chinese with English abstract) http://www.researchgate.net/publication/279544207_Zircon_U-Pb_geochronological_and_Hf_isotopic_constraints_on_petrogenesis_of_Yingwuling_tungsten_polymetallic_deposit_in_Guangdong_Province_and_its_geological_significance

     

    Zheng W, Mao JW, Zhao HJ, Ouyang HG, Zhao CS and Yu XF. 2017a. Geochemistry, Sr-Nd-Pb-Hf isotopes systematics and geochronological constrains on petrogenesis of the Xishan A-type granite and associated W-Sn mineralization in Guangdong Province, South China. Ore Geology Reviews, 88: 739-752 doi: 10.1016/j.oregeorev.2016.12.021

     

    Zheng W, Mao JW, Zhao HJ, Zhao CS and Yu XF. 2017b. Two Late Cretaceous A-type granites related to the Yingwuling W-Sn polymetallic mineralization in Guangdong Province, South China: Implications for petrogenesis, geodynamic setting, and mineralization. Lithos, 274-275: 106-122 doi: 10.1016/j.lithos.2017.01.002

     

    Zheng W and Yu XF. 2018. Geochronological and geochemical constraints on the petrogenesis and geodynamic setting of the Daheishan porphyry Mo deposit, Northeast China. Resource Geology, 68(1): 1-21 doi: 10.1111/rge.12140

     

    Zheng W, Mao JW, Zhao CS, Yu XF, Zhao HJ, Ouyang ZX and Wu XD. 2018. Early Cretaceous magmatism and associated polymetallic mineralization in South China: The Tiantang example. International Geology Review, 60(11-14): 1560-1580 doi: 10.1080/00206814.2017.1326180

     

    Zhou LL, Zeng QD, Liu JM, Friis H, Zhang ZL and Duan XX. 2013. Geochronology of the Xingshan molybdenum deposit, Jilin Province, NE China, and its Hf isotope significance. Journal of Asian Earth Sciences, 75: 58-70 doi: 10.1016/j.jseaes.2013.06.014

     

    Zonenshain LP. 1973. The evolution of Central Asiatic geosynclines through sea-floor spreading. Tectonophysics, 19(3): 213-232 doi: 10.1016/0040-1951(73)90020-6

     

    陈贤. 2018. 松辽地块东缘地壳增生与花岗岩成矿作用研究. 博士学位论文. 北京: 中国地质大学(北京), 1-183

     

    葛文春, 吴福元, 周长勇, 张吉衡. 2007. 兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义. 科学通报, 52(20): 2407-2417 doi: 10.3321/j.issn:0023-074x.2007.20.012

     

    鞠楠. 2020. 吉林中部斑岩型钼矿成矿规律与远景预测. 博士学位论文. 长春: 吉林大学, 1-115

     

    李锦轶. 1998. 中国东北及邻区若干地质构造问题的新认识. 地质评论, 44(4): 339-347 https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199804001.htm

     

    李明. 2010. 中国东北现代河流碎屑锆石U-Pb年代学和Hf同位素研究及大陆生长与演化. 博士学位论文. 武汉: 中国地质大学(武汉), 1-175

     

    刘万臻, 孙丰月, 黄维平, 王琳琳, 苏斌, 桓凤明. 2014. 吉林福安堡棒子山花岗岩锆石U-Pb年龄、岩石地球化学特征及其地质意义. 世界地质, 33(2): 289-298 doi: 10.3969/j.issn.1004-5589.2014.02.005

     

    苗来成, 范蔚茗, 张福勤, 刘敦一, 简平, 施光海, 陶华, 石玉若. 2003. 小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及其意义. 科学通报, 48(22): 2315-2323 doi: 10.3321/j.issn:0023-074X.2003.22.004

     

    邵济安, 洪大卫, 张履桥. 2002. 内蒙古火成岩Sr-Nd同位素特征及成因. 地质通报, 21(12): 817-822 doi: 10.3969/j.issn.1671-2552.2002.12.003

     

    隋振民, 葛文春, 吴福元, 张吉衡, 徐学纯, 程瑞玉. 2007. 大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因. 岩石学报, 23(2): 461-480 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20070245&journal_id=ysxb

     

    孙德有, 吴福元, 林强, 路孝平. 2001. 张广才岭燕山早期白石山岩体成因与壳幔相互作用. 岩石学报, 17(2): 227-235 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20010227&journal_id=ysxb

     

    孙德有, 吴福元, 高山, 路孝平. 2005. 吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约. 地学前缘, 12(2): 263-275 doi: 10.3321/j.issn:1005-2321.2005.02.028

     

    孙景贵, 张勇, 邢树文, 赵克强, 张增杰, 白令安, 马玉波, 刘勇胜. 2012. 兴蒙造山带东缘内生钼矿床的成因类型、成矿年代及成矿动力学背景. 岩石学报, 28(4): 1317-1332 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20120427&journal_id=ysxb

     

    王琳琳. 2018. 中国东北小兴安岭及邻区斑岩型矿床成矿作用研究. 博士学位论文. 长春: 吉林大学, 1-165

     

    王志伟. 2017. 小兴安岭-张广才岭早古生代火成岩的岩石学与地球化学: 对块体拼合历史和地壳属性的制约. 博士学位论文. 长春: 吉林大学, 1-177

     

    吴福元, 曹林. 1999. 东北亚地区的若干重要基础地质问题. 世界地质, 18(2): 1-13 https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ902.001.htm

     

    吴福元, 孙德有. 1999. 中国东部中生代岩浆作用与岩石圈减薄. 长春科技大学学报, 29(4): 313-318 https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ199904000.htm

     

    吴福元, 孙德有, 林强. 1999. 东北地区显生宙花岗岩的成因与地壳增生. 岩石学报, 15(2): 181-189 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=19990236&journal_id=ysxb

     

    吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20070223&journal_id=ysxb

     

    许文良, 孙晨阳, 唐杰, 栾金鹏, 王枫. 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1620-1646 https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201905017.htm

     

    杨宝森, 陈国库, 杨大捷, 贾洪波, 李忠群, 杨子龙. 2011. 浅论后倒木钼矿的地质特征. 吉林地质, 30(1): 70-74 doi: 10.3969/j.issn.1001-2427.2011.01.014

     

    于晓飞, 侯增谦, 钱烨, 李碧乐. 2012. 吉林中东部福安堡钼矿床成矿流体、稳定同位素及成矿时代研究. 地质与勘探, 48(6): 1151-1162 https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201206013.htm

     

    张海洪, 许文良, 王枫, 曹花花. 2016. 吉林中部小蜂蜜顶子组火山岩的形成时代及其地质意义: 锆石U-Pb年代学和Hf同位素组成证据. 吉林大学学报(地球科学版), 46(5): 1418-1429 https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201605013.htm

     

    张勇. 2013. 吉林省中东部地区侏罗纪钼矿床的地质、地球化学特征与成矿机理研究. 博士学位论文. 长春: 吉林大学, 1-144

     

    郑伟, 陈懋弘, 赵海杰, 赵财胜, 侯可军, 刘建新, 李学孟, 常利忠. 2013. 广东鹦鹉岭钨多金属矿床中黑云母花岗岩LA-ICP-MS锆石U-Pb定年和Hf同位素特征及其地质意义. 岩石学报, 29(12): 4121-4135 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20131206&journal_id=ysxb

  • 加载中

(15)

(4)

计量
  • 文章访问数:  869
  • PDF下载数:  52
  • 施引文献:  0
出版历程
收稿日期:  2021-02-10
修回日期:  2021-04-20
刊出日期:  2021-07-01

目录