粤东莲花山断裂带韧性剪切的温压条件及其对钨锡铜多金属成矿作用的约束

王军, 汪礼明, 公凡影, 王艳, 王成明, 卜安, 朱沛云. 2021. 粤东莲花山断裂带韧性剪切的温压条件及其对钨锡铜多金属成矿作用的约束. 岩石学报, 37(6): 1921-1932. doi: 10.18654/1000-0569/2021.06.17
引用本文: 王军, 汪礼明, 公凡影, 王艳, 王成明, 卜安, 朱沛云. 2021. 粤东莲花山断裂带韧性剪切的温压条件及其对钨锡铜多金属成矿作用的约束. 岩石学报, 37(6): 1921-1932. doi: 10.18654/1000-0569/2021.06.17
WANG Jun, WANG LiMing, GONG FanYing, WANG Yan, WANG ChengMing, BU An, ZHU PeiYun. 2021. Temperature and pressure conditions of dynamic metamorphism with its constraints on polymetallic mineralization of tungsten, tin and copper in Lianhuashan fault zone in eastern Guangdong Province. Acta Petrologica Sinica, 37(6): 1921-1932. doi: 10.18654/1000-0569/2021.06.17
Citation: WANG Jun, WANG LiMing, GONG FanYing, WANG Yan, WANG ChengMing, BU An, ZHU PeiYun. 2021. Temperature and pressure conditions of dynamic metamorphism with its constraints on polymetallic mineralization of tungsten, tin and copper in Lianhuashan fault zone in eastern Guangdong Province. Acta Petrologica Sinica, 37(6): 1921-1932. doi: 10.18654/1000-0569/2021.06.17

粤东莲花山断裂带韧性剪切的温压条件及其对钨锡铜多金属成矿作用的约束

  • 基金项目:

    本文受中国地质调查局整装勘查区矿产地质调查与找矿预测(DD20190159)、中国科学院矿物学与成矿学重点实验室合作研究基金(KLMM20200201)和中国地质调查局项目(12120114015901)联合资助

详细信息
    作者简介:

    王军, 男, 1985年生, 在读博士, 高级工程师, 从事有色金属矿产勘查工作, E-mail: 582515224@qq.com

    通讯作者: 汪礼明, 男, 1963年生, 博士, 教授级高级工程师, 长期从事有色金属矿产勘查工作, E-mail: wlm1640@163.com
  • 中图分类号: P575.1;P611

Temperature and pressure conditions of dynamic metamorphism with its constraints on polymetallic mineralization of tungsten, tin and copper in Lianhuashan fault zone in eastern Guangdong Province

More Information
  • 广东莲花山断裂带西南段分布有棉洋-双华(Ⅰ)、北山嶂-九龙嶂(Ⅱ)、五指嶂-锅子嶂(Ⅲ)、梅陇-鲘门-观音山(Ⅳ)4条韧性剪切带,呈巨型构造透镜体沿北东向展布。已有研究表明韧性剪切带与本区钨、锡、铜多金属成矿作用关系密切,控制着矿床的空间分布,是重要含矿、控矿构造。按照变质程度和矿物组成,区内韧性剪切带由核部至边部可以划分为石英透镜体→石榴子石(堇青石)糜棱岩→糜棱片岩→片岩→原岩等;通过对其中的石榴子石、黑云母等典型矿物进行电子探针分析(EPMA),并利用石榴石-黑云母地质温压计估算了4条韧性剪切带形成的温压条件,它们分别为484~526℃/4.92~7.72kbar、458~469℃/2.17~2.67kbar、536~551℃/1.28~1.67kbar、512~516℃/4.38~4.87kbar,与区内变质岩野外地质变形、变质特征相吻合,且火山岩为主的地区变质压力明显高于花岗岩为主的地区。研究显示,变质条件对区内变质分带和多金属成矿作用有明显的控制,棉洋-双华和梅陇-鲘门-观音山韧性剪切带的压力条件相对较高,金属成矿以钨、锡多金属成矿为主;而北山嶂-九龙嶂和五指嶂-锅子嶂韧性剪切带的压力相对较低,金属成矿则以铜、铅、锌成矿为主。

  • 加载中
  • 图 1 

    广东省莲花山断裂带西南段沿线地质简图(据汪礼明等, 2018修改)

    Figure 1. 

    The brief geological map along southwestern part of Lianhuashan fault (modified after Wang et al., 2018)

    图 2 

    莲花山断裂带韧性剪切带和代表性岩石矿物手标本(a-e)及显微镜下特征(f-j)

    Figure 2. 

    Ductile metamorphic belts and hand specimen (a-e) with microscopic characteristics (f-j) of the typical rocks in Lianhuashan fault belts

    图 3 

    莲花山断裂带内不同韧性剪切带内石榴子石含量变化及样品JS-1石榴子石主量元素成分剖面

    Figure 3. 

    Variation of the garnet contents in different ductile shear belts in Lianhuashan fault belt and the main elements component profile of Samples JS-1 garnet

    图 4 

    莲花山断裂带韧性剪切带成矿特征

    Figure 4. 

    Metallogenic characteristics of different dynamic metamorphic belts in Lianhuashan fault belt

    表 1 

    莲花山断裂内不同韧性剪切带内石榴子石的化学成分(wt%)

    Table 1. 

    The garnet chemical compositions in different ductile shear belts Lianhuashan fault (wt%)

    样品号 GSZ-1 XF-2 JS-1 TJ-2 YP-B-1
    测点数 5 3 2 3 2 5 2 2 2 5 3 2 1
    SiO2 36.88 37.18 37.28 37.31 37.86 37.31 37.42 37.16 37.41 37.69 37.49 37.64 37.42
    TiO2 0.05 0.04 0.05 0.05 0.06 0.03 0.01 0.00 0.01 0.12 0.05 0.05 0.04
    Al2O3 21.07 21.05 21.18 20.94 21.36 21.04 21.21 21.23 21.11 21.10 21.03 21.22 21.16
    FeO 17.34 16.15 15.89 19.09 28.28 40.57 40.96 42.08 41.35 34.02 40.47 41.00 41.50
    MnO 24.81 25.00 26.02 16.71 8.06 0.08 0.16 0.23 0.19 5.87 0.41 0.20 0.13
    MgO 0.09 0.12 0.13 0.04 0.08 0.89 0.80 0.98 0.79 0.65 0.84 0.82 0.81
    CaO 1.34 1.59 1.14 7.00 6.78 2.24 1.20 0.89 1.34 3.08 1.69 2.09 1.75
    Na2O 0.01 0.03 0.00 0.00 0.01 0.02 0.04 0.02 0.06 0.00 0.02 0.00 0.10
    K2O 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.01
    P2O5 0.01 0.01 0.00 0.01 0.03 0.02 0.05 0.05 0.03 0.02 0.02 0.00 0.01
    F 0.33 0.01 0.03 0.20 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    NiO 0.01 0.02 0.04 0.02 0.00 0.01 0.00 0.02 0.04 0.01 0.04 0.00 0.00
    Cr2O3 0.01 0.02 0.01 0.01 0.00 0.02 0.03 0.07 0.02 0.00 0.00 0.00 0.00
    Total 101.82 101.22 101.75 102.56 101.28 101.73 101.90 102.71 102.36 102.56 102.06 103.01 101.90
    O 12
    Si 2.99 3.01 3.01 2.99 3.00 2.99 3.01 2.98 3.00 3.00 3.01 2.99 2.99
    Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
    Al 2.01 2.01 2.01 1.98 1.99 1.99 2.01 2.01 2.00 1.98 1.99 1.99 1.99
    Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Fe3+ 0.00 0.00 0.00 0.02 0.01 0.02 0.00 0.01 0.00 0.01 0.01 0.01 0.02
    Fe2+ 1.17 1.09 1.07 1.26 1.87 2.70 2.75 2.81 2.77 2.25 2.71 2.71 2.76
    Mn 1.70 1.71 1.78 1.14 0.54 0.01 0.01 0.02 0.01 0.40 0.03 0.01 0.01
    Mg 0.01 0.01 0.02 0.00 0.01 0.11 0.10 0.12 0.09 0.08 0.10 0.10 0.10
    Ca 0.12 0.14 0.10 0.60 0.58 0.19 0.10 0.08 0.12 0.26 0.14 0.18 0.15
    Mg/Fe 0.01 0.01 0.02 0.00 0.01 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04
    And 0.24 0.00 0.00 1.15 0.26 0.86 0.00 0.41 0.17 0.61 0.40 0.64 0.77
    Pyr 0.35 0.50 0.53 0.14 0.33 3.54 3.19 3.86 3.14 2.58 3.37 3.23 3.19
    Sps 56.28 56.89 58.87 37.81 18.02 0.19 0.37 0.51 0.43 13.26 0.93 0.45 0.29
    Gro 3.61 4.58 3.28 18.89 18.91 5.55 3.43 2.12 3.69 8.17 4.44 5.29 4.21
    Alm 38.67 36.30 35.50 41.89 62.28 89.86 91.34 93.09 92.39 75.37 90.43 90.40 91.55
    注:测点数表示在同一薄片测试的不同位置;数据为算术平均值
    下载: 导出CSV

    表 2 

    莲花山断裂内不同韧性剪切带中云母的化学成分(wt%)

    Table 2. 

    The mica chemical compositions in different ductile shear belts in Lianhuashan fault (wt%)

    样品号(矿物) GSZ-1(Ms) XF-2(Bt) JS-1(Bt) TJ-2(Bt) YP-B-1(Ms)
    SiO2 46.31 46.40 46.51 46.31 33.211 34.063 34.67 34.49 35.37 35.29 33.77 32.79 31.37 32.53 44.97 45.18
    TiO2 0.15 0.22 0.21 0.20 1.854 1.904 1.41 1.49 1.47 1.44 0.10 0.13 0.12 0.25 0.18 0.11
    Al2O3 32.46 33.24 32.94 32.48 18.735 19.02 17.67 17.42 17.69 17.72 21.58 21.45 20.87 21.01 34.47 34.35
    FeO 2.79 2.51 2.32 2.46 31.153 31.058 26.55 26.22 26.48 26.86 26.85 27.09 30.30 26.63 1.96 1.79
    MnO 0.31 0.27 0.18 0.18 0.142 0.201 0.02 0.05 0.05 0.07 0.06 0.13 0.10 0.03 0.02 0.00
    MgO 0.48 0.34 0.38 0.44 1.154 1.196 6.24 6.48 6.76 6.49 4.05 4.06 4.49 3.86 0.43 0.39
    CaO 0.02 0.01 0.01 0.00 0.005 0.008 0.13 0.02 0.00 0.05 0.10 0.12 0.02 0.05 0.00 0.02
    Na2O 0.39 0.37 0.49 0.47 0.113 0.117 0.20 0.21 0.18 0.21 0.36 0.14 0.11 0.37 0.76 0.83
    K2O 10.86 11.07 10.88 10.93 9.345 9.298 8.54 8.99 9.25 8.87 8.21 7.95 5.90 7.97 10.42 10.42
    Cr2O3 0.18 0.02 0.07 0.00 0.048 0.131 0.23 0.03 0.05 0.00 0.15 0.55 0.06 0.30 0.18 0.13
    Total 94.73 94.61 95.11 94.70 96.40 97.63 95.93 95.72 97.64 97.34 95.28 94.48 93.35 92.99 93.39 93.232
    O 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
    Si 2.82 2.83 2.82 2.80 2.44 2.53 2.47 2.45 2.57 2.55 2.38 2.31 2.18 2.24 2.71 2.71
    Al 1.18 1.17 1.18 1.20 1.56 1.47 1.48 1.46 1.43 1.45 1.62 1.69 1.71 1.71 1.29 1.29
    Al 1.15 1.22 1.18 1.12 0.06 0.19 0.00 0.00 0.09 0.07 0.18 0.09 0.00 0.00 1.15 1.14
    Ti 0.01 0.01 0.01 0.01 0.10 0.11 0.08 0.08 0.08 0.08 0.01 0.01 0.01 0.01 0.01 0.00
    Fe2+ 0.14 0.13 0.12 0.12 1.91 1.93 1.58 1.56 1.61 1.63 1.58 1.59 1.76 1.54 0.10 0.09
    Mn 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00
    Mg 0.04 0.03 0.03 0.04 0.13 0.13 0.66 0.69 0.73 0.70 0.43 0.43 0.47 0.40 0.04 0.03
    Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00
    Na 0.05 0.04 0.06 0.06 0.02 0.02 0.03 0.03 0.02 0.03 0.05 0.02 0.01 0.05 0.09 0.10
    K 0.84 0.86 0.84 0.84 0.87 0.88 0.78 0.81 0.86 0.82 0.74 0.71 0.52 0.70 0.80 0.80
    Cr 0.01 0.001 0.004 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.04 0.00 0.02 0.01 0.01
    Total 6.25 6.31 6.25 6.20 7.09 7.27 7.09 7.08 7.39 7.33 6.99 6.87 6.68 6.65 6.18 6.16
    Fe2+/(Fe2++Mn+Mg) 0.70 0.76 0.75 0.71 0.93 0.93 0.71 0.69 0.69 0.70 0.79 0.78 0.79 0.79 0.71 0.75
    Ti/(Mg+Fe+Ti+Mn) 0.03 0.05 0.06 0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.00 0.00 0.00 0.01 0.05 0.04
    Al/(Al+Mg+Fe+Ti+Mn+Si) 0.43 0.44 0.44 0.44 0.26 0.26 0.24 0.23 0.23 0.23 0.29 0.29 0.28 0.29 0.46 0.46
    下载: 导出CSV

    表 3 

    莲花山断裂内韧性剪切带内温压计算结果

    Table 3. 

    Calculation results of temperature and pressure of ductile shear zone

    韧性剪切带 测点号 温度(℃) 压力(kbar)
    棉洋-双华(Ⅰ) XF-2-1-1-5 526 7.72
    XF-2-1-1-4 499 7.53
    XF-2-1-1-6 484 6.19
    GSZ-1-2-2-3 526 4.92
    梅陇-鲘门-观音山(Ⅳ) YP-B-1-1-2 516 4.87
    YP-B-1-1-5 512 4.38
    北山嶂-九龙嶂(Ⅱ) JS-1-2-7 469 2.67
    JS-1-2-8 458 2.46
    JS-1-2-6 469 2.17
    五指嶂-锅子嶂(Ⅲ) TJ-2-1-3-3 536 1.67
    TJ-2-1-1-3 551 1.30
    TJ-2-1-3-4 550 1.28
    下载: 导出CSV
  •  

    Hoisch TD. 1991. Equilibria within the mineral assemblage quartz+muscovite+biotite+garnet+plagioclase, and implications for the mixing properties of octahedrally-coordinated cations in muscovite and biotite. Contributions to Mineralogy and Petrology, 108(1): 43-54

     

    Holdaway MJ. 2000. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American Mineralogist, 85(7): 881-892 http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsammin&resid=85/7-8/881

     

    Hua RM, Chen PR, Zhang WL and Lu JJ. 2005. Three major metallogenic events in Mesozoic in South China. Mineral Deposits, 24(2): 99-107 (in Chinese with English abstract) http://www.researchgate.net/publication/284690423_Three_major_metallogenic_events_in_Mesozoic_in_South_China

     

    Li JC and Qiu YX. 1990. A preliminary study on the basic features of the fault dynamo-thermal metamorphic belt of the Lianhuashan and its genetic mechanism. Journal of Changchun University of Earth Science, 20(1): 11-20 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ199001001.htm

     

    Li JH, Cawood PA, Ratschbacher L, Zhang YQ, Dong SW, Xin YJ, Yang H and Zhang PX. 2020. Building Southeast China in the Late Mesozoic: Insights from alternating episodes of shortening and extension along the Lianhuashan fault zone. Earth-Science Reviews, 201: 103056 doi: 10.1016/j.earscirev.2019.103056

     

    Li ZL and Yang ZF. 1995. A study of rock-forming and ore-forming temperatures of the Lianhuashan tungsten deposit, Guangdong Province. Mineral Deposits, 14(3): 252-260 (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DQHB199603004.htm

     

    Qian LB, Guo LR and Yu QL. 2017. Mineral prediction model of the integrative exploration area in the southwestern section of the Lianhuashan fault zone, Guangdong Province. Journal of Geology, 41(3): 468-473 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSDZ201703015.htm

     

    Qiu YX, Qiu JS, Li JC and Zhong HP. 1991. Deformation and metamorphic features of Lianhuashan fault zone during Meso-Cenozoic time and mechanism of their formation. Bulletin of The Institute of Geomechanics, CAGS, 14: 93-106 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX199100007.htm

     

    Qiu ZW, Wang H, Yan QH, Li SS, Wang LM, Bu A, Mu SL, Li P and Wei XP. 2016. Zircon U-Pb geochronology and Lu-Hf isotopic composition of quartz porphyry in the Changpu Sn polymetallic deposit, Guangdong Province, SE China and their geological significance. Geochimica, 45(4): 374-386 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX201604003.htm

     

    Qiu ZW, Li SS, Yan QH, Wang H, Wei XP, Li P, Wang LM and Bu A. 2017a. Late Jurassic Sn metallogeny in eastern Guangdong, SE China coast: Evidence from geochronology, geochemistry and Sr-Nd-Hf-S isotopes of the Dadaoshan Sn deposit. Ore Geology Reviews, 83: 63-83 doi: 10.1016/j.oregeorev.2016.11.015

     

    Qiu ZW, Yan QH, Li SS, Wang H, Tong LX, Zhang RQ, Wei XP, Li P, Wang LM, Bu A and Yan LM. 2017b. Highly fractionated Early Cretaceous Ⅰ-type granites and related Sn polymetallic mineralization in the Jinkeng deposit, eastern Guangdong, SE China: Constraints from geochronology, geochemistry, and Hf isotopes. Ore Geology Reviews, 88: 718-738 doi: 10.1016/j.oregeorev.2016.10.008

     

    Qiu ZW, Wang H, Yan QH, Li SS, Wang LM, Bu A, Wei XP, Li P and Mu SL. 2017. Zircon U-Pb geochronology, geochemistry and Lu-Hf isotopes of granite porphyry in Taoxihu tin polymetallic deposit, Guangdong Province, SE China and its geological significance. Geotectonica et Metallogenia, 41(3): 516-532 (in Chinese with English abstract)

     

    Wang J, Wan CH, Wen CS and Wang MJ. 2014. Geological characteristics and its ore-controlling factors in Tangchun tungsten-tin ore district in the eastern Guangdong. Resources Environment & Engineering, 28(3): 280-283 (in Chinese with English abstract)

     

    Wang J, Liao MY, Bu A and Zhu PY. 2016. Construction of the geological model of "Trinity" prospecting prediction in Jinkeng tin-copper polymetallic deposit, Jiexi County, Guangdong Province. Geological Review, 62(Suppl. 1): 51-52 (in Chinese) http://www.zhangqiaokeyan.com/academic-journal-cn_geological-review_thesis/0201253274283.html

     

    Wang J. 2018. New progress of basic geology and comprehensive research in the tin-copper polymetallic ore-deposit in the Lianhuashan fault zone integrated exploration area, Guangdong Province. Resources Environment & Engineering, 32(2): 209-211 (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTotal-HBDK201802009.htm

     

    Wang LM, Bu A, Wang H, Li SS, Chen SQ and Guo LR. 2014. New progress of exploration and prospecting in the south-west section of Lianhuashan fault zone, Guangdong. Mineral Deposits, 33(Suppl. 1): 965-966 (in Chinese)

     

    Wang LM, Wang J, Wang H, Bu A, Li SS, Qian LB and Wang W. 2018. Dynamic metamorphism origin for the tin-copper polymetallic mineralization in the Lianhuashan fault, eastern Guangdong Province. Geotectonica et Metallogenia, 42(5): 908-917 (in Chinese with English abstract) http://www.researchgate.net/publication/329670999_Dynamic_Metamorphism_Origin_for_the_Tin-Copper_Polymetallic_Mineralization_in_the_Lianhuashan_Fault_Eastern_Guangdong_Province

     

    Wang XH, Zhang WG, Chen ZL, Zhou RD, Chen BL, Xu DK, Huo HL, Li JL, Zhang T, Ding ZL and Li XZ. 2020. Deformation time limit of ore-controlling structures in Lianhuashan fault zone along the South China coast: Constraints from zircon U-Pb age and stratigraphic age. Geology in China, 47(4): 985-997 (in Chinese with English abstract)

     

    Wu AS, Liu JX, Zhuang WM and Xu YX. 2007. Basic features of Shenzhen dynamic and thermal metamorphic belt in Guangdong Province. West-China Exploration Engineering, 19(7): 111-114 (in Chinese with English abstract)

     

    Wu CM and Zhao GC. 2006. Recalibration of the garnet-muscovite (GM) geothermometer and the garnet-muscovite-plagioclase-quartz (GMPQ) geobarometer for metapelitic assemblages. Journal of Petrology, 47(12): 2357-2368 doi: 10.1093/petrology/egl047

     

    Wu CM. 2019. Original calibration of a garnet geobarometer in metapelite. Minerals, (9)9: 540 doi: 10.3390/min9090540

     

    Yan QH, Wang H, Qiu ZW, Wang M, Mu SL, Wang LM, Bu A, Wang SM, Li SS, Wei XP and Li P. 2018. Zircon and cassiterite U-Pb ages and Lu-Hf isotopic compositions of Tashan tin-bearing porphyry in Guangdong Province, SE China and its geological significance. Geotectonica et Metallogenia, 42(4): 718-731 (in Chinese with English abstract) http://www.researchgate.net/publication/328599615_Zircon_and_Cassiterite_U-Pb_Ages_and_Lu-Hf_Isotopic_Compositions_of_Tashan_Tin-bearing_Porphyry_in_Guangdong_Province_SE_China_and_its_Geological_Significance

     

    Zhao Z, Liu C, Guo NX, Zhao WW, Wang PA and Chen ZH. 2018a. Temporal and spatial relationships of granitic magmatism and W mineralization: Insights from the Xingguo orefield, South China. Ore Geology Reviews, 95: 945-973 doi: 10.1016/j.oregeorev.2018.03.022

     

    Zhao Z, Zhao WW, Lu L and Wang HY. 2018b. Constraints of multiple dating of the Qingshan tungsten deposit on the Triassic W(-Sn) mineralization in the Nanling region, South China. Ore Geology Reviews, 94: 46-57 doi: 10.1016/j.oregeorev.2018.01.009

     

    Zhao Z, Fu TY, Gan JW, Liu C, Wang DH, Sheng JF, Li WB, Wang PA, Yu ZF and Chen YC. 2021. A synthesis of mineralization style and regional distribution and a proposed new metallogenic model of Mesozoic W-dominated polymentallic deposits in South China. Ore Geology Reviews, 133: 104008 doi: 10.1016/j.oregeorev.2021.104008

     

    Zou HP, Wang JH and Qiu YX. 2000. 40Ar/39Ar ages of the Nan'ao shear zone and the Lianhuashan shear zone in Guangdong Province and their geological significance. Acta Geoscientica Sinica, 21(4): 356-364 (in Chinese with English abstract)

     

    华仁民, 陈培荣, 张文兰, 陆建军. 2005. 论华南地区中生代3次大规模成矿作用. 矿床地质, 24(2): 99-107 doi: 10.3969/j.issn.0258-7106.2005.02.002

     

    李建超, 丘元禧. 1990. 广东莲花山燕山早期断裂动热变质带的基本特征及形成机制的探讨. 长春地质学院学报, 20(1): 11-20 https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ199001001.htm

     

    李兆麟, 杨忠芳. 1995. 广东莲花山钨矿成岩成矿温度研究. 矿床地质, 14(3): 252-260 https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ503.007.htm

     

    钱龙兵, 郭丽荣, 余庆亮. 2017. 广东莲花山断裂带南西段整装勘查区矿床预测模型. 地质学刊, 41(3): 468-473 https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201703015.htm

     

    邱元禧, 邱津松, 李建超, 钟宏平. 1991. 广东莲花山断裂带中、新生代多期复合变形变质带的基本特征及其形成机制的探讨. 中国地质科学院地质力学研究所所刊, (14): 93-106 https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX199100007.htm

     

    丘增旺, 王核, 闫庆贺, 李莎莎, 汪礼明, 卜安, 慕生禄, 李沛, 魏小鹏. 2016. 广东长埔锡多金属矿床石英斑岩锆石U-Pb年代学、Hf同位素组成及其地质意义. 地球化学, 45(4): 374-386 doi: 10.3969/j.issn.0379-1726.2016.04.003

     

    丘增旺, 王核, 闫庆贺, 李莎莎, 汪礼明, 卜安, 魏小鹏, 李沛, 慕生禄. 2017. 广东陶锡湖锡多金属矿床花岗斑岩锆石U-Pb年代学、地球化学、Hf同位素组成及其地质意义. 大地构造与成矿学, 41(3): 516-532 https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201703010.htm

     

    王军, 万传辉, 文昌生, 王模坚. 2014. 粤东塘唇钨锡矿区地质特征及其主要控矿因素. 资源环境与工程, 28(3): 280-283 doi: 10.3969/j.issn.1671-1211.2014.03.009

     

    王军, 廖明英, 卜安, 朱沛云. 2016. 广东省揭西县金坑锡铜多金属矿床"三位一体"找矿预测地质模型的构建. 地质论评, 62(增1): 51-52

     

    王军. 2018. 广东莲花山断裂带南西段锡铜多金属矿整装勘查区基础地质与综合研究新进展. 资源环境与工程, 32(2): 209-211 https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201802009.htm

     

    汪礼明, 卜安, 王核, 李莎莎, 陈少青, 郭丽荣. 2014. 广东莲花山断裂带南西段整装勘查区勘查找矿新进展. 矿床地质, 33(增1): 965-966 https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2014S1485.htm

     

    汪礼明, 王军, 王核, 卜安, 李莎莎, 钱龙兵, 王玮. 2018. 粤东莲花山断裂带动力变质作用与动力变质热液成矿. 大地构造与成矿学, 42(5): 908-917 https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201805011.htm

     

    王晓虎, 张文高, 陈正乐, 周荣德, 陈柏林, 许典葵, 霍海龙, 李季霖, 张涛, 丁志磊, 李效壮. 2020. 华南沿海莲花山断裂带控矿构造变形时限: 来自锆石U-Pb年龄与地层时代的约束. 中国地质, 47(4): 985-997 https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202004007.htm

     

    吴安生, 刘建雄, 庄文明, 许业熙. 2007. 广东深圳动热变质带的基本特征. 西部探矿工程, 19(7): 111-114 doi: 10.3969/j.issn.1004-5716.2007.07.047

     

    闫庆贺, 王核, 丘增旺, 王敏, 慕生禄, 汪礼明, 卜安, 王赛蒙, 李莎莎, 魏小鹏, 李沛. 2018. 粤东塌山斑岩型锡多金属矿床锆石及锡石U-Pb年代学、Hf同位素组成及其地质意义. 大地构造与成矿学, 42(4): 718-731 https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201804011.htm

     

    邹和平, 王建华, 丘元禧. 2000. 广东南澳和莲花山韧性剪切带40Ar/39Ar年龄及其地质意义. 地球学报, 21(4): 356-364 doi: 10.3321/j.issn:1006-3021.2000.04.004

  • 加载中

(4)

(3)

计量
  • 文章访问数:  1237
  • PDF下载数:  65
  • 施引文献:  0
出版历程
收稿日期:  2021-02-09
修回日期:  2021-06-13
刊出日期:  2021-06-01

目录