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Abstract 

In this paper, the stability and oscillation of the solutions for a class of 
generalized Hamiltonian parity-time non-symmetry model is investigated. By 
means of the mathematical analysis method, some sufficient conditions to 
guarantee the stability and oscillation of the solutions are obtained. Computer 
simulations are provided to demonstrate our results. 

1. Introduction 

It is known that a nonlinear system is a system in which the small 
change in input may produce an incommensurably large change in 
response. A coupled system of simple oscillators may often produce many 
new phenomena than isolated oscillator model. It gains much attention 
for engineers, physicists and mathematicians in last decade [1-15]. For 
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example, Beregov and Melkikh have considered a system of autonomous 
inductively coupled Van der Pol generators, the mathematical model is 
the following: 
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where 12M  is the coefficient of mutual induction which is either positive 

or negative number. The authors established the presence of a strange 
non-chaotic attractor and several stable limiting cycles [1]. Guin et al. 
have investigated a bilaterally coupled Rayleigh-Duffing oscillators 
model as follows: 
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With the increase of coupling factor between Rayleigh-Duffing oscillators, 
birth of periodic oscillations was observed. Dynamics becomes chaotic 
through a quasi-periodic route but for even higher coupling factor, 
synchronized stable periodic oscillations in Rayleigh-Duffing oscillators 
were found [2]. Tsoy has presented several models with parity-time 
symmetry. Hamiltonian functions for two and three linear oscillators 
coupled via coordinates and accelerations are derived. The mathematical 
model of two nonlinear oscillators is the following ([3], model (5), page 
464): 
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Regions of stable dynamics for two coupled oscillators are obtained. 
Numerical solutions for model (3) are provided. The author pointed out 
that there is an infinite growth of coordinates and velocities in system (3) 
above the threshold. It means that the model under consideration is 
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incomplete, so that more terms are necessary for an adequate description 
of the process. Then the author provided the following generalized 
Hamiltonian parity-time symmetry model: 

( ) ( ) ( ) ( ) ( ) ( ( ) ( )) ( )

( ) ( ) ( ) ( ) ( ) ( ( ) ( )) ( )





=++′′µ+++′γ−′′

=++′′µ+++′γ+′′

.032

,032

2
2
2

2
1112

2
022

1
2
2

2
1221

2
011

txtxtxtxtxtxwtxtx

txtxtxtxtxtxwtxtx

k

k
 (4) 

However, the author did not discuss any dynamical properties for model 
(4). In other words, the dynamical property for system (4) is still an open 
problem. In this paper, we discuss the following general coupled 
oscillators model: 
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where ( )2,1,,,,1 2
21 =µγ≠µµ iw iiii k  may be different numbers. By 

means of the mathematical analysis method, the boundedness, stability 
and oscillations of the solutions for model (5) are derived. It was 
emphasized that model (4) is a special case of system (5). Therefore, some 
dynamical behaviour of the generalized Hamiltonian parity-time 
symmetry model has been provided. 

2. Preliminaries 

System (5) can be written as the following: 
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or 

( ) [ ( ) ( ) ( ) ( ) ( )

( ) ( ( ) ( )) ( ) ( ( ) ( )) ( )]

( ) [ ( ) ( ) ( ) ( ) ( )

( ) ( ( ) ( )) ( ) ( ( ) ( )) ( )]














+−+µ+µ+

µ+′γµ+−−′γ
µµ−

=′′

+−+µ+µ+

µ+′γµ−−−′γ−
µµ−

=′′

.33

1
1

,33

1
1

2
2
2

2
11

2
2

2
11221

1
2
11111112

2
222

21
2

1
2
2

2
12

2
2

2
12112

2
2
22222221

2
111

21
1

txtxtxtxtxtxtx

txwtxtxtxwtxtx

txtxtxtxtxtxtx

txwtxtxtxwtxtx

k

k

k

k

 

(7) 

For convenience, system (7) can be written as an equivalent four 
dimensional first order system: 
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The system (8) can be expressed in the following matrix form: 

( ) ( ) ( )( ),txftAxtx +=′   (9) 
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where ( ) ( ) ( ) ( ) ( )( ) ,,,, 4321
Ttxtxtxtxtx =  A is a 4 by 4 matrix, and ( )xf  is 

a 4 by 1 vector: 

( ) ,

1
1000

001
10

2
2
221111

2
11

21

222
2
221

2
112

21

44



























γ−µγµ−µ

µµ−

γµ−−µγ−−µ

µµ−

== ×

ww

ww
aA ij

kk

kk
 

( )

( )

( )

( )

( )

( ( ) ( )) ( ) ( ( ) ( )) ( )

( ( ) ( )) ( ) ( ( ) ( )) ( )

.

33

0

33

0

3
2
3

2
11

2
3

2
11

1
2
3

2
13

2
3

2
12

4

3

2

1

























+−+µ

+−+µ
=

























=

txtxtxtxtxtx

txtxtxtxtxtx

xf

xf

xf

xf

xf  

The linearized system of (9) is 

( ) ( ).tAxtx =′   (10) 

Obviously, system (9) can be seen as a distributed system of system (10). 
The distributed term is ( ).xf  

Lemma 1. Assume that the following inequality holds: 
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then there exists a unique equilibrium point which is exactly the zero point 
for system (8) (or (9)). 
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Proof. An equilibrium point [ ]Txxxxx ∗∗∗∗∗ = 4321 ,,,  of system (8) is a 

constant solution of the following system: 
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Noting that ,0,0 42 == ∗∗ xx  so system (12) changes to the following: 
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We shall prove that .0,0 31 == ∗∗ xx  Indeed, system (13) can be written 

as a matrix form: 

,0=∗Bx   (14) 

where [ ] ,, 31
Txxx ∗∗∗ =  B is a 2 by 2 matrix: 
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Firstly, suppose that for any ,, 31
∗∗ xx  matrix B is a nonsingular matrix. In 

other words, the following inequality holds: 
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then based on the linear algebraic Cramer’s rule, system (14) only has 

trivial solution, namely, .0,0 31 == ∗∗ xx  However, when .0,0 31 == ∗∗ xx  

Equation (15) changes to (11). The proof is completed. 

Lemma 2. Assume that ,0,0 21 <µ<µ  then the solutions of system 

(8) (or (9)) are bounded. 
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are higher order infinity than ( ) ( ) ( ).4,,1, =jitxtx ji  Therefore, when 

,0,0 21 <µ<µ  there exists 0>M  such that ( ) ( ) 08 <′ tV  as ,Mxi >  

( ).4,,1=i  This means that the all solutions of system (8) are bounded. 

3. Stability of the Solutions 

Theorem 1. Assume that all solutions of system (8) (or (9)) are 
bounded. If zero is the unique equilibrium point of system (8) (or (9)) for 
selecting parameter values. Let 4321 ,,, αααα  be characteristic values of 

matrix A. If ,0<αi  or ( ) ( ),4,,1,0 =<α ieR i  then the trivial solution 

is stable. 

Proof. Let [ ]Tiii 41 ,, ννν =  be the corresponding characteristic 

vectors of ( ).4,3,2,1=α ii  Then the solution to the linearized system 

(10) is the following: 

( ) ( ) ( ) ( ) ( ),expexpexpexp 444333222111 tctctctctx iiiii α+α+α+α= νννν  

(17) 

where ( )4,3,2,1=ici  are any constants. Since 0<αi  or ( ) ,0Re <αi  

( ),4,,1=i  this means that the trivial solution of system (10) is stable. 
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Noting that ( ) ( ) 031 == xfxf  in system (9). Both ( )xf2  and ( )xf4  are 

higher infinitesimal as ( ) 01 →tx  and ( ) .03 →tx  Hence, the stability of 

the trivial solution of system (10) implies the stability of the trivial 
solution of system (9). 

4. Oscillatory Behaviour of the Solutions 

Theorem 2. Assume that all solutions of system (9) are bounded. If 
zero is the unique equilibrium point of system (9) for selecting parameter 
values. Let 4321 ,,, αααα  be characteristic values of matrix A. If there 

exists some positive ,kα  or ( ) { }( ),4,3,2,1,0 ∈≥α kkeR  then the unique 

equilibrium point of system (9) is unstable. System (9) (thus system (5)) 
generates an oscillatory solution. 

Proof. Obviously, the trivial solution of system (9) is unstable if and 
only if the trivial solution of system (10) is unstable. Therefore, we only 
need to prove the instability of the trivial solution of system (10). Since 

( )4,3,2,1=α ii  are characteristic values of matrix A, then the 

characteristic equation corresponding to system (10) is the following: 

( ) .0
4

1
=α−λ∏ = ii

 (18) 

Without loss of generality, we assume that ,01 >α  or ( ) .0Re 1 ≥α  Then 

from (18) we have 

.01 =α−λ   (19) 

Since ,01 >α  or ( ) ,0Re 1 >α  this means that there is a positive (or a 

positive real part) characteristic value of system (10). Therefore, the 
trivial solution of system (10) is unstable, implies that the trivial solution 
of system (9) is unstable. If ( ) ,0Re 1 =α  this means that system (10) has a 

pure imaginary root. Since both sin t and cos t can not tend to zero as t 
tends to infinity. Therefore, the trivial solution is unstable. The 
boundedness of the solutions of system (9) and the instability of unique 
equilibrium point will force system (9) to generate an oscillatory solution. 
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Theorem 3. Assume that all solutions of system (9) are bounded. If 
zero is the unique equilibrium point of system (9) for selecting parameter 

values. Let ( ) [ ]ijjiijjj aaA ∑ ≠=≤≤ +=µ 4
,141max  [16]. If ( ) ,0>µ A  then 

system (9) has an oscillatory solution. 

Proof. Let ( ) ( ) ,4
1 txty ii∑ =

=  from (10), we have 

( ) ( ) ( ).tyAty µ≤′   (20) 

Consider the scalar differential equation 

( ) ( ) ( ).tzAtz µ=′   (21) 

According to the comparison theorem of differential equation, we have 
( ) ( ).tzty ≤  For Equation (21), the characteristic equation associated with 

(21) is given by 

( ).Aµ=λ   (22) 

Since ( ) ,0>µ A  this means that there exists a positive characteristic root 

of Equation (21). Thus, the trivial solution of Equation (21) is unstable, 
implying that the trivial solution of Equation (10) is unstable. It 
suggested that system (9) (thus system (5)) has an oscillatory solution. 

5. Simulation Results 

The simulation is based on the equivalent system (8) of (5), first the 
parameters are selected as follows: ,15.0,55.0,45.0 121 =γ−=µ−=µ  

,45.0,25.0,16.0,08.0,25.0 21212 ====−=γ wwkk  then the 

characteristic values of A are − 0.1557 ± 0.6937i, − 0.0001, − 0.0887. Based 
on Theorem 1, the trivial solution is convergent (see Figure 1). When the 
parameters are selected as ,12.0,28.0,35.0 121 −=γ−=µ−=µ  

,15.0,25.0,06.0,08.0,115.0 21212 ==−==−=γ wwkk  then the 

characteristic values of A are 0.1514 ± 0.2681i, − 0.1489 ± 0.2381i. The 
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conditions of Lemma 1 and Lemma 2 are satisfied. Since there is a 
positive real part of characteristic value 0.1514 + 0.2681i of matrix A, based 
on Theorem 2, there exists an oscillatory solution for system (8) (see Figure 2). 
When the parameters are selected as ,15.0,36.0,48.0 121 =γ−=µ−=µ  

,45.0,65.0,25.0,18.1,25.0 21212 ===−=−=γ wwkk  then ( ) .0489.1=µ A  

The conditions of Lemma 1 and Lemma 2 are satisfied. Since  
( ) ,00489.1 >=µ A  based on Theorem 3, there exists an oscillatory 

solution for system (8) (see Figure 3). 

 

(a) Solid line: ( ),1 tx  dashed line: ( )tx2  

 

(b) Solid line: ( ),3 tx  dashed line: ( )tx4   

Figure 1. The trivial solution is convergent. 
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(a) Solid line: ( ),1 tx  dashed line: ( )tx2  

 

(b) Solid line: ( ),3 tx  dashed line: ( )tx4  

Figure 2. Oscillatory behaviour of the solutions. 
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(a) Solid line: ( ),1 tx  dashed line: ( )tx2  

 

(b) Solid line: ( ),3 tx  dashed line: ( )tx4  

Figure 3. Oscillatory behaviour of the solutions. 

6. Conclusion 

In this paper, we have discussed the convergence and oscillatory 
behaviour of the solutions for a generalized coupled oscillators model. 
Based on mathematical analysis method, we provided some sufficient 
conditions to guarantee the stability and oscillation of the solutions. 
Some simulations are provided to indicate the effectness of the criterion. 

References 

 [1] R. Y. Beregov and A. V. Melkikh, De-synchronization and chaos in two inductively 
coupled Van der Pol auto-generators, Chaos, Solitons and Fractals 73 (2015), 17-28. 

DOI: https://doi.org/10.1016/j.chaos.2014.12.017 

 [2] A. Guin, M. Dandapathak, S. Sarkar and B. C. Sarkar, Birth of oscillation in coupled 
non-oscillatory Rayleigh-Duffing oscillators, Communications in Nonlinear Science 
and Numerical Simulation 42 (2017), 420-436. 

DOI: https://doi.org/10.1016/j.cnsns.2016.06.002 



CHUNHUA FENG 78

 [3] E. N. Tsoy, Coupled oscillators with parity-time symmetry, Physics Letters A 381(5) 
(2017), 462-466. 

DOI: https://doi.org/10.1016/j.physleta.2016.12.023 

 [4] P. F. Xu and Y. F. Jin, Stochastic resonance in multi-stable coupled systems driven 
by two driving signals, Physica A: Statistical Mechanics and its Applications          
492 (2018), 1281-1289. 

DOI: https://doi.org/10.1016/j.physa.2017.11.056 

 [5] V. Settimi and F. Romeo, Dynamic regimes of a nonlinearly coupled electromechanical 
system, International Journal of Non-Linear Mechanics 103 (2018), 68-81. 

DOI: https://doi.org/10.1016/j.ijnonlinmec.2018.04.008 

 [6] J. J. Gil, P. Ciaurriz and I. Diaz, Controlling two haptically-coupled devices: System 
modeling and stability analysis, Mechatronics 49 (2018), 224-234. 

DOI: https://doi.org/10.1016/j.mechatronics.2017.12.010 

 [7] A. Neirameh, M. Eslami and S. Shokooh, New solution algorithm of coupled 
nonlinear system of Schrodinger equations, Alexandria Engineering Journal 57(1) 
(2018), 247-253. 

DOI: https://doi.org/10.1016/j.aej.2016.12.003 

 [8] M. O. Fen, Persistence of chaos in coupled Lorenz systems, Chaos, Solitons and 
Fractals 95 (2017), 200-205. 

DOI: https://doi.org/10.1016/j.chaos.2016.12.017 

 [9] J. C. Ji and J. Zhou, Coexistence of two families of sub-harmonic resonances in a 
time-delayed nonlinear system at different forcing frequencies, Mechanical Systems 
and Signal Processing 93 (2017), 151-163. 

DOI: https://doi.org/10.1016/j.ymssp.2017.02.007 

 [10] H. Fotouhi, S. Moryadee and E. M. Hooks, Quantifying the resilience of an urban 
traffic-electric power coupled system, Reliability Engineering and System Safety 163 
(2017), 79-94. 

DOI: https://doi.org/10.1016/j.ress.2017.01.026   

 [11] S. Aljoudi, B. Ahmad, J. J. Nieto and A. Alsaedi, A coupled system of Hadamard type 
sequential fractional differential equations with coupled strip conditions, Chaos, 
Solitons and Fractals 91 (2016), 39-46. 

DOI: https://doi.org/10.1016/j.chaos.2016.05.005 

 [12] P. Brzeski, E. Pavlovskaia, T. Kapitaniak and P. Perlikowski, Controlling 
multistability in coupled systems with soft impacts, International Journal of 
Mechanical Sciences 127 (2017), 118-129. 

DOI: https://doi.org/10.1016/j.ijmecsci.2016.12.022 



STABILITY AND OSCILLATION OF THE SOLUTIONS … 79

 [13] M. Safi, L. Baudouin and A. Seuret, Refined exponential stability analysis of a 
coupled system, IFAC-PapersOnLine 50(1) (2017), 11972-11977. 

DOI: https://doi.org/10.1016/j.ifacol.2017.08.1758 

 [14] Y. Guo, S. Liu and X. H. Ding, The existence of periodic solutions for coupled 
Rayleigh system, Neurocomputing 191 (2016), 398-408. 

DOI: https://doi.org/10.1016/j.neucom.2016.01.039 

 [15] D. Kampert and U. Epple, Challenges in the modelling and operation of physically 
coupled systems of systems, IFAC-PapersOnLine 48(1) (2015), 916-917. 

DOI: https://doi.org/10.1016/j.ifacol.2015.05.104 

 [16] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of 
Population Dynamics, Kluwer Academic, Boston, 1992.  

g 


