

УДК 539.194; 539.196.3

РАСЧЕТ СТРУКТУРЫ И ИК СПЕКТРА МОЛЕКУЛЫ 2,3-ДИ-О-НИТРО-МЕТИЛ-β-D-ГЛЮКОПИРАНОЗИДА МЕТОДОМ ФУНКЦИОНАЛА ПЛОТНОСТИ

Л. М. Бабков¹, И. В. Ивлиева¹, М. В. Королевич²

¹Саратовский государственный университет E-mail: babkov@sgu.ru ²Институт физики НАН Беларуси, Минск

Методом функционала плотности (B3LYP) в базисе 6-31G(d) построена структурно-динамическая модель молекулы 2,3-ди-Онитро-метил-β-D-глюкопиранозида. Минимизирована энергия, рассчитаны структуры, дипольный момент, поляризуемость, частоты нормальных колебаний в гармоническом приближении и распределение интенсивности в ИК спектре молекулы. Дана интерпретация ИК спектра 2,3-ди-О-нитро-метил-В-Dглюкопиранозида, измеренного в диапазоне 600-3700 см⁻¹ при комнатной температуре. Обсуждены преимущества построенной модели в сравнении с моделью, основанной на использовании метода валентно-силового поля и валентно-оптической теории. **Ключевые слова:** 2,3-ди-О-нитро-метил-β-D-глюкопиранозид, молекулярное моделирование, метод функционала плотности, метод валентно-силового поля, валентно-оптическая теория, электрооптические параметры, механические параметры, нормальные колебания, ИК спектр, частота, интенсивность.

Calculation of Structure and IR Spectrum of the 2,3-di-O-nytro-methyl- β -D-Glucopyranoside Molecule by Density Functional Method

L. M. Babkov, I. V. Ivlieva, M. V. Korolevich

Structural-dynamic models of the 2,3-di-O-nytro-methyl- β -D-glucopyranoside molecule are constructed by density functional method in basis 6-31G(*d*). Energies, structures, dipole moments, polarizabilities, frequencies of normal modes in harmonic approximation and IR intensities have been calculated. Interpretation of IR absorption spectrum is presented in range 600–3700 cm⁻¹. Advantages of model, which was constructed, compared with model, which bases on using valence-force field method and valency-optical theory, are discussed. **Key words:** 2,3-di-O-nytro-methyl- β -D-glucopiranoside, molecular modeling, density functional method, valence-force field method, valence-optical theory, electro-optical parameters, mechanical parameters, normal modes, IR spectrum, frequencies, intensity.

Введение

Моделирование структуры молекулярных систем (многоатомные молекулы, их молекулярные комплексы) методом теории функционала плотности (ТФП) [1, 2], как показала практика, дает приемлемые результаты, которые вполне могут быть использованы в расчетах их колебательных спектров. Абсолютная ошибка при вычислении частот нормальных колебаний не превосходит 4-5% в высокочастотной области колебательного спектра (2850–3750 см⁻¹), в средней и низкочастотной областях спектра она уменьшается вдвое. Для ее устранения можно использовать процедуру масштабирования частот и силовых постоянных. Можно выйти за рамки гармонического приближения, что пока случается нечасто, по двум причинам: учет механического ангармонизма требует значительных затрат машинного времени при использовании стандартного пакета программ Gaussian'03 [3], в котором реализован метод ТФП; получаемые результаты для молекулярной системы с числом атомов больше 12 или комплекса с водородной связью не всегда удовлетворительны. Но чаще всего исследователи имеют дело именно с такими объектами: громоздкими, но интересными с точек зрения фундаментальной науки и практических приложений. Построение структурно-динамических моделей таких систем на основе квантово-механических методов становится необходимым элементом в исследованиях структуры, оптических спектров и свойств вещества.

В данной работе объектом исследования методом ТФП стали структура и ИК спектр молекулы 2,3-ди-О-нитро-метил-β-D-глюкопиранозида. Это соединение принадлежит к классу углеводов (моносахаридов), в которых строение, внутри- и межмолекулярные взаимодействия теснейшим образом связаны и определяют свойства веществ. Уникальность свойств обеспечивает постоянный интерес к этим соединениям и широкое их использование. ИК спектры моносахаридов структурированы нечетко, имеют диффузный вид, что является следствием перекрывания большого числа близкорасположенных полос поглощения. Экспериментальное отнесение большинства частот затруднено даже при использовании избирательного дейтерирования и охлаждения образцов до температуры кипения жидкого гелия. Интерпретация таких спектров – чрезвычайно сложная задача. Она требует основательного

теоретического анализа, результатом которого является построение спектральных кривых, сопоставимых с экспериментальными, который вполне реален, и, тем не менее, до настоящего времени эта задача в приложении к моносахаридам не решена полностью.

Ранее, в работах [4-9] при исследовании ИК спектров моносахаридов использовались результаты их расчетов, не выходящих за рамки комбинированного подхода с использованием методов CNDO/2 и классического валентно-силового. В некоторых из них влияние водородной связи на спектр оценивалось на основе модели квазиизолированной молекулы. В работе [4] теоретический анализ колебательного спектра 2,3-ди-О-нитро-метил-β-D-глюкопиранозида был проведен на основе расчета частот и форм нормальных колебаний классическим полуэмпирическим методом в приближении валентно-силового поля. Геометрия молекулы была взята из работы [10], в которой методом рентгеноструктурного анализа (РСА) определены длины связей и углы родственного соединения – тетранитрата метил-β-D-глюкопиранозида. При построении валентно-силового поля использовались силовые постоянные его молекулы и молекулы β-D-глюкозы для гидроксильных групп. На основе полученных результатов был интерпретирован экспериментальный ИК спектр 2,3-ди-О-нитрометил-β-D-глюкопиранозида в области 400-1700 см⁻¹. Общий вид его ИК спектра существенным образом определен гидроксилами пиранозных циклов и нитратными группами. Установлены типичные спектроскопические признаки замещения гидроксильной группы у второго и третьего атомов углерода пиранозного цикла и закономерности формирования структуры резко выделяющейся по интенсивности сложной полосы в диапазоне частот 1600–1700 см⁻¹, которые объясняют характерные изменения в спектре при переходе от метил-β-D-глюкопиранозида к 2,3-ди-О-нитро-метил-β-D-глюкопиранозиду.

Цель данной работы – построение структурно-динамической модели молекулы 2,3-ди-О-нитро-метил- β -D- глюкопиранозида методом ТФП с использованием функционала B3LYP, реализованного в комплексе программ GAUSSIAN-03 для Windows [3]. Метод ТФП в приложении к моносахаридам впервые использован авторами в исследованиях структуры и колебательного ИК спектра метил- β -Dглюкопиранозида [11–14]. Результат оказался удачным. Преимущества метода ТФП перед

методом валентно-силового поля и валентнооптической теории проявились на результатах расчета интенсивностей валентных колебаний полярных групп. Это стимулировало дальнейшее использование этого метода в аналогичном исследовании более сложного объекта - 2,3-ди-Онитро-метил-β-D-глюкопиранозида. Авторы работы [4] констатируют, что природа расщепления полос, отнесенных к колебаниям нитрогрупп в его спектре ИК поглощения, до конца не изучена. Это стало одним из стимулов к проведению исследований, результаты которых обсуждаются в данной работе. Кроме того, полученные результаты станут в дальнейшем основой более полного теоретического изучения и описания структуры и ИК спектра этого вещества с учетом влияния на них водородной связи.

Моделирование

Моделирование проведено методом ТФП с использованием функционала B3LYP в базисах 6-31G и 6-31G(d), описание которых можно найти [1, 2]. Базис 6-31G включает одну базисную функцию для внутренней оболочки, сгруппированную из шести гауссовых функций, и набор из внутренней функции, сгруппированный из трех гауссовых и внешней не сгруппированной гауссовой функции для валентной оболочки каждого атома [2]. Базис 6-31G(d) включает дополнительно по одному набору несгруппированных функций на каждый тяжелый атом.

Построена структурно-динамическая модель изолированной молекулы: минимизирована энергия, рассчитаны структура, дипольный момент, поляризуемость, частоты нормальных колебаний в гармоническом приближении и распределение интенсивности по ним в ИК спектре свободной молекулы 2,3-ди-О-нитро-метил-β-D- глюкопиранозида.

Обсуждение результатов

Минимизированная энергия молекулы 2,3-ди-О-нитро-метил-β-D-глюкопиранозида равна –1135.374277 Хартри (–4.950232·10⁻¹⁵ Дж) и существенно превосходит энергию молекулы метил-β-D-глюкопиранозида (–726.45 Хартри) [11].

Строение молекулы приведено на рис. 1. Длины связей С-Н и С-С и углы, рассчитанные в обоих базисах, близки. Длины связей пиранозного цикла молекулы, рассчитанные в базисе 6-31G(*d*), оказались ближе к длинам, определенным методом РСА в молекуле тетранитрата метил-β-Dглюкопиранозида. Длины полярных связей N=O, О-N, С-О, О-Н, рассчитанные в базисе 6-31G, значительно завышены по сравнению с рассчитанными в базисе 6-31G (d). Последние оказались ближе к длинам, определенным методом PCA [10]. На основе анализа результатов квантовохимических расчетов предпочтение было отдано результатам, полученным в базисе 6-31G (d): они были использованы в моделировании и анализе ИК спектра молекулы 2,3-ди-О-нитро-метилβ-D-глюкопиранозида и будут использованы в дальнейшем при более полном анализе структуры и ИК спектра его образца при учете влияния на них водородной связи.

Рис. 1. Строение молекулы 2,3-ди-О-нитро-метил-β-Dглюкопиранозида

Для удобства анализа полученных результатов введены обозначения: R – для атомов шестичленного кольца, R1 – для атомов группы О-СН₃, R2 – для атомов нитрогруппы О-NO₂, R3 – для атомов гидроксильной группы О-Н; R4 – для атомов группы CH₂–OH. В табл. 1 сравниваются рассчитанные и определенные методом РСА длины связей пиранозного кольца и нитрогрупп в моносахаридах, в табл. 2 приведены остальные рассчитанные геометрические параметры молекулы 2,3-ди-О-нитро-метил-β-D-глюкопиранозида. Молекула не обладает симметрией. Неплоское пиранозное кольцо имеет конформацию «кресло». Его связи С-С немного длиннее соответствующих связей пиранозных колец в молекулах метил-β-D-глюкопиранозида [4] и тетранитрата метил-β-D-глюкопиранозида [10]. Превышение не превосходит 0.03 Å, откуда следует вывод о незначительном изменении геометрии пиранозного цикла в моносахаридах при замещении атома водорода гидроксила на нитрогруппу.

Общий дипольный момент и его проекции на оси координат составили $\mu_0 = 3.697$ D, что на треть больше дипольного момента молекулы метил-β-D-глюкопиранозида ($\mu_0 = 2.807$ D [11]), $\mu_x = -0.949$ D; $\mu_y = -1.706$ D; $\mu_z = 3.139$ D, (D-Дебай).

На рис. 2 приведены измеренный ИК спектр 2,3-ди-О-нитро-метил-β-D-глюкопиранозида (кривая 1) и рассчитанный ИК спектр его молекулы (кривая 2). В табл. 3 приведены рас-

Таблица І	
-----------	--

Длины связей пиранозного цикла и нитрогрупп в моносахаридах: I – тетранитрат метил-β-D-гюкопиранозида, II – метил-β-D-гюкопиранозида, III – 2,3-ди-O-нитро-метил-β-D- глюкопиранозида

Связь, Å	I, PCA, [10]	II, 6-31G (<i>d</i>) [11]	III, 6-31G (<i>d</i>)	III, 6-31G
C ₂ -C ₅	1.52	1.54	1.56	1.55
C ₅ –C ₇	1.52	1.52	1.55	1.55
C ₇ –C ₉	1.51	1.53	1.54	1.54
C ₃ –C ₉	1.54	1.54	1.53	1.53
O ₁ –C ₃	1.43	1.44	1.44	1.48
O ₁ -C ₂	1.42	1.42	1.40	1.44
O ₂₁ -N ₂₂	1.42	_	1.43	1.49
O ₁₇ -N ₁₈	1.41	_	1.42	1.49
N ₁₈ =O ₂₀	1.20	_	1.21	1.24
N ₂₃ =O ₂₄	1.20	_	1.21	1.23
N ₂₂ =O ₂₃	1.19	_	1.20	1.24
N ₁₈ =O ₁₉	1.20	_	1.20	1.23

Таблица	2

тасс-итанны	с теомстрические п	параметры моле	кулы 2,5 да о патро	-мстил-р-д-тлюко	ппрапозида
Связь, Å	6-31G (<i>d</i>)	6-31G	Связь, Å	6-31G (<i>d</i>)	6-31G
C ₃ -C ₂₇	1.54	1.54	С ₂₇ -Н ₂₈	1.10	1.10
C7-O21	1.46	1.50	C2-H16	1.10	1.10
C ₅ -O ₁₇	1.45	1.48	С ₁₂ -Н ₁₅	1.10	1.09
O ₁₁ -C ₁₂	1.43	1.46	С ₂₇ -Н ₂₉	1.09	1.09
C ₉ –O ₂₅	1.42	1.45	С ₁₂ -Н ₁₃	1.09	1.09
C ₂₇ –O ₃₀	1.42	1.45	C7-H8	1.09	1.09
C ₂ -O ₁₁	1.41	1.44	C5-H6	1.09	1.09
O ₁₁ -C ₁₂	1.43	1.46	C ₉ -H ₁₀	1.09	1.09
C ₃ –H ₄	1.10	1.10	O ₂₅ -H ₂₆	0.97	0. 98
C ₁₂ -H ₁₄	1.10	1.10	O ₃₀ -H ₃₁	0.97	0. 98
Углы, град	6-31G (<i>d</i>)	6-31G	Углы, град	6-31G (<i>d</i>)	6-31G
O ₂₃ =N ₂₂ =O ₂₄	130. 6	130. 9	H ₈ -C ₇ -C ₅	110.3	110. 6
O ₁₉ =N ₁₈ =O ₂₀	130. 1	130. 4	H ₁₃ -C ₁₂ -H ₁₅	109. 8	110. 4
O ₁₇ -N ₁₈ =O ₂₀	117. 7	117.5	C ₅ -C ₂ -H ₁₆	109. 5	110. 5
O ₂₁ -N ₂₂ =O ₂₄	117.4	117	H ₁₃ -C ₁₂ -H ₁₄	109.3	109.9
C ₅ -O ₁₇ -N ₁₈	117. 2	117.4	O ₁ -C ₃ -H ₄	109.2	108.3
C ₂ -C ₅ -C ₇	116. 2	116. 6	O ₁ -C ₃ -C ₂₇	109. 2	108. 7
O ₁ -C ₂ -C ₅	115.6	115.4	H ₄ -C ₃ -C ₂₇	108.9	110. 4
C ₇ -O ₂₁ -N ₂₂	115.5	115.0	H ₁₄ -C ₁₂ -H ₁₅	108.9	109.5
C ₅ -C ₇ -C ₉	114. 8	115.5	C ₅ -C ₇ -O ₂₁	108.6	108. 1
C ₂ -O ₁ -C ₃	114. 6	114. 4	H ₈ -C ₇ -O ₂₁	108.4	107. 9
O ₃₀ -C ₂₇ -C ₃	114. 1	113.6	C ₃ -C ₂₇ -H ₂₈	108.3	108. 9
C ₇ -C ₅ -O ₁₇	113. 8	113. 7	C ₃ -C ₂₇ -H ₂₉	108.3	108.6
C ₂ -O ₁₁ -C ₁₂	113. 7	114. 5	H ₂₈ -C ₂₇ -H ₂₉	107. 9	108.6
C ₃ -C ₉ -O ₂₅	113. 5	112. 1	C ₉ -O ₂₅ -H ₂₆	107. 7	109. 8
C ₂ -C ₅ -O ₁₇	112. 9	112. 1	H ₆ -C ₅ -C ₇	107.4	108. 2
O ₁ -C ₂ -O ₁₁	112. 3	111.8	H ₂₉ -C ₂₇ -O ₃₀	106. 9	106. 2
O ₁₇ -N ₁₈ =O ₁₉	112. 3	112. 1	H ₁₀ -C ₉ -C ₃	106. 5	107. 1
$O_{21} - N_{22} = O_{23}$	112	112. 1	O ₁₁ -C ₁₂ -H ₁₃	106.4	105.5
C ₇ -C ₉ -O ₂₅	111. 9	111.6	O ₁ -C ₃ -C ₉	106. 3	105.6
C ₂₇ -C ₃ -C ₉	111. 8	112	C ₂₇ -O ₃₀ -H ₃₁	106. 3	108.3
O ₁₁ -C ₁₂ -H ₁₅	111.6	111	H ₁₀ -C ₉ -O ₂₅	106. 1	105.5
$H_4 - C_3 - C_9$	111.3	111. 7	C ₂ -C ₅ -H ₆	105. 6	105. 8
H ₂₈ -C ₂₇ -O ₃₀	111.2	110. 7	O ₁ -C ₂ -H ₁₆	104. 7	104. 4
H ₈ -C ₇ -C ₉	111.2	111.5	C ₅ -C ₂ -O ₁₁	104. 4	103. 9
O ₁₁ -C ₁₂ -H ₁₄	110. 8	110. 4	C ₉ -C ₇ -O ₂₁	103. 1	102. 6
C ₇ -C ₉ -C ₃	110. 5	111.3	H ₆ -C ₅ -O ₁₇	98.9	98.3
O ₁₁ -C ₂ -H ₁₆	110. 4	110. 9	_	_	_

Рассчитанные геометрические параметры молекулы 2,3-ди-О-нитро-метил-β-D- глюкопиранозида

Рис.2. Спектры молекулы 2,3-ди-О-нитро-метил-β-Dглюкопиранозида: эксперимент (1), теория (2)

считанные частоты нормальных колебаний, их пиковые интенсивности в ИК спектре исследуемой молекулы, дано отнесение наблюдаемых полос.

Из-за отсутствия экспериментальных данных предметно обсудить и оценить результаты в области 30–600 см⁻¹ ИК спектра не представляется возможным.

В области 600-1800 см⁻¹ в целом имеет место удовлетворительное согласие рассчитанных и измеренных частот, их масштабирование не проводилось. Из табл. 3 видно, что нормальные колебания молекулы 2,3-ди-О-нитро-метилβ-D-глюкопиранозида в этой области сильно делокализованы: в них активно участвуют метильная и гидроксильная группы, группа СН₂-ОН и пиранозное кольцо. Поэтому в экспериментальном спектре в этой области сложно произвести однозначное отнесение некоторых полос поглощения к колебаниям определенных структурных элементов молекулы. Тем не менее, представляется важным выяснить поведение отдельных полос ИК спектра (так называемых структурно-спектральных характеристик) при переходе от β-D-глюкозы к ее замещенным. Рассчитанные колебания с частотами $v_{44} = 1036$ и $v_{53} = 1224$ см⁻¹ соответствуют измеренным полосам с максимумами 1030 и 1022 см⁻¹, которые возникают при переходе от β-D-глюкозы к метил-β-D-глюкопиранозиду [11] и далее к 2,3-ди-О-нитро-метил-β-D-глюкопиранозиду. Их появление обусловлено замещением гидроксильного водорода у атома C2 в β-D-глюкозе метильной группой СН3. При переходе от метил-β-D-глюкопиранозида к 2,3-ди-О-нитрометил-β-D-глюкопиранозиду эти частоты не изменяются, интенсивность колебания v44 увеличивается вдвое, а колебания v₅₃ уменьшаются вдвое. Из анализа коэффициентов форм этих двух колебаний следует, что при переходе от метил-β-D-глюкопиранозида к 2,3-ди-О-нитро-метил-β-D-глюкопиранозиду к нормальному колебанию v44 примешиваются колебания нитрогрупп и других структурных элементов. Колебание v₅₃ относится в основном к метильной группе и отчасти пиранозному кольцу. Колебание v₆₅ с частотой 1410 см⁻¹ при переходе от метил-β-Dглюкопиранозида к 2,3-ди-О-нитро-метил-β-Dглюкопиранозиду в соответствии с расчетом по частоте изменяется незначительно, а по интенсивности уменьшается вдвое.

Таблица 3

Измеренные и рассчитанные частоты и интенсивности фундаментальных колебаний ИК спектра молекулы 2,3-ди-О-нитро-метил-β-D- глюкопиранозида

№	v _{теор} , см ⁻¹ [4]	v_{эксп}, см ⁻¹ [4]	v_{теор}, см ⁻¹	I, км/моль	Форма колебания
28	622	622(сл.)	626	14,8	$ \begin{array}{c} \gamma_{RR1} ({\rm OCO}), \chi_{R} ({\rm OCCC}), \chi_{R} ({\rm COCC}), Q_{R2} ({\rm O-N}), \\ \chi_{R} ({\rm OCCH}), \chi_{RR1} ({\rm COCH}), \gamma_{R2} ({\rm O-N=O}), \\ \chi_{R} ({\rm COCH}), \chi_{RR4} ({\rm COCC}), \gamma_{RR1} ({\rm COC}), \chi_{R} ({\rm CCCC}), \\ Q_{R1} ({\rm CO}), \chi_{RR2} ({\rm OCCO}) \end{array} $
29			637	27	$ \begin{array}{c} Q_{R2}(O-N), \chi_{R4}(HCOH), \gamma_{RR4}(CCO), \chi_{RR4}(CCOH), \\ \gamma_{R2}(O-N=O), \chi_{RR3}(CCOH), Q_{R}(CC) \end{array} $
30	674	666(сл.)	646	20,5	$ \begin{array}{c} \chi_{R R2} (\text{CCCO}), Q_{R2}(\text{O}-\text{N}), \chi_{R} (\text{HCCC}), \chi_{R4} (\text{HCOH}), \\ \chi_{R R3} (\text{CCOH}), \chi_{R R3} (\text{HCOH}), \chi_{R} (\text{CCCC}), \gamma_{R R4} (\text{CCO}), \\ \chi_{R R1} (\text{HCCO}), \chi_{R R2} (\text{HCCO}) \end{array} $
31	716	711	727	16,1	$\begin{array}{c} Q_{R2}(O-N), \gamma_{RR2} (CON), \chi_{RR2} (CCCO), Q_{R}(CC), \\ \gamma_{RR2} (CCO), \chi_{RR3} (OCCO), \chi_{R2RR2} (OCCO), \\ \chi_{RR2} (HCON), \gamma_{R} (COC), \chi_{RR3} (HCCO), \\ \gamma_{RR2} (O=N=O) \end{array}$
32	726	727()	755	18	χ _{R R2} (CONO)
33	741	/3/(сл.)	759	11,5	χ _{R R2} (CONO)
34	_	752	776	24,1	$ \begin{array}{c} \chi_{RR2}(\text{HCCO}), \gamma_{RR2}(\text{CON}), \chi_{R2RR2}(\text{OCCO}), \\ \chi_{R}(\text{HCCH}), \chi_{RR2}(\text{HCON}), Q_{R}(\text{CC}), \chi_{R}(\text{CCCC}), \\ \chi_{RR1}(\text{CCCO}), \chi_{RR2}(\text{OCCO}), \chi_{RR2}(\text{CCON}), \\ Q_{RR2}(\text{CO}), \gamma_{RR2}(\text{CCO}), \gamma_{R2}(\text{O-N=O}), \chi_{R}(\text{HCCC}), \\ \chi_{R}(\text{OCCH}), \chi_{RR2}(\text{CONO}), \gamma_{R2}(\text{O=N=O}), \beta_{R}(\text{CCH}), \chi_{R}(\text{COCH}), \chi_{RR1} \\ (\text{OCOC}), \chi_{RR1}(\text{HCOC}), Q_{R2}(\text{N=O}) \end{array} $
35	793	_	797	5,8	$\begin{array}{c} Q_{R R4}(CC), \chi_{R R2}(CCCO), \gamma_{R}(CCC), \chi_{R R1}(CCCO), \chi_{R R2}(CCON), \chi_{R R2}\\ (OCCO) \end{array}$
36	_	840 (o.c.)	846	178,1	$ \begin{array}{c} \chi_{R4} (\text{HCOH}), \chi_{R} _{R4} (\text{CCCH}), Q_{R2} (\text{O}-\text{N}), \\ \gamma_{R} _{R2} (\text{O}=\text{N}=\text{O}), Q_{R} (\text{OC}), \beta_{R} _{R4} (\text{CCH}), \\ \chi_{R} (\text{CCCH}), \chi_{R} _{R4} (\text{HCCH}), \chi_{R} (\text{OCCC}) \end{array} $
37	870	850 (o.c.)	853	249,4	$\begin{array}{c} Q_{R2}(O-N), \chi_{R4} (\text{HCOH}), \gamma_{R R2} (O=N=O), \\ \chi_{R R4} (\text{CCCH}), Q_{R R2} (\text{CO}) \end{array}$
38	879	_	864	125	$Q_{R2}(O=N), \gamma_{RR2}(O=N=O),$
39	908	892(сл.)	902	44,7	$ \begin{split} \chi_{RR4}(\text{OCCH}),\chi_{RR2}(\text{HCCO}),\chi_{R}(\text{COCC}),\chi_{R}(\text{HCCH}),\\ Q_{R}(\text{CC}),Q_{R}(\text{CO}),\chi_{R4RR3}(\text{CCCO}),\chi_{RR3}(\text{HCOH}),\\ \chi_{RR3}(\text{CCOH}),\chi_{R4}(\text{HCOH}),Q_{RR2}(\text{CO}),\beta_{R}(\text{HCC}),\\ \beta_{RR4}(\text{CCH}),\chi_{RR2}(\text{HCON}),\chi_{R}(\text{OCCC}),\gamma_{RR4}(\text{CCC}),\\ \chi_{RR1}(\text{COCO}),\chi_{RR4}(\text{HCCH}),\chi_{RR4}(\text{HCCC}),\\ \chi_{R}(\text{COCH}),Q_{R4}(\text{OC}),\chi_{RR3}(\text{CCCO}),\chi_{RR2}(\text{CCCO}) \end{split}$
40	931	930	941	26,3	$Q_{R R1}$ (OC), Q_{R} (CC), Q_{R1} (OC), γ_{R} (OCC)
41	980	962(cp)	986	10,7	$Q_{R R2}(CO), \chi_{R}(CCCH), \chi_{R}(HCCH), Q_{R R1}(CO)$
42	985	998	1003	66,8	$\begin{array}{c} Q_{R R 2} (CO), Q_{R 4} (CO), \chi_{R} (COCH), \chi_{R} (HCCH), \\ Q_{R R 4} (CC), Q_{R} (CC), Q_{R R 1} (CO), Q_{R 1} (CO) \end{array}$
43	1010		1023	114,8	Q _{R R2} (CO), Q _R (CO), Q _{R4} (CO)
44	1047	1048 (c.)	1036	38,8	$\begin{array}{c} \chi_{R}(\text{CCCC}), \chi_{R}(\text{OCCC}), Q_{R R2}(\text{CO}), \chi_{R}(\text{COCC}), \\ \chi_{R R4}(\text{HCCH}), \chi_{R R4}(\text{CCCH}), \chi_{R R2}(\text{CCCO}), Q_{R}(\text{CC}), \\ Q_{R R1}(\text{CO}), \beta_{R4}(\text{HCO}), \chi_{R}(\text{HCCC}), \chi_{R4}(\text{HCOH}) \end{array}$

№	v _{теор} , см ⁻¹ [4]	v_{эксп}, см ⁻¹ [4]	v_{теор}, см ⁻¹	I, км/моль	Форма колебания
45	1051	1072(c.)	1059	75,6	$ \begin{array}{c} \chi_{RR4} (\text{OCCH}), \chi_{RR4} (\text{HCCH}), Q_{R} (\text{OC}), \chi_{RR4} (\text{CCCO}), \\ \chi_{R} (\text{CCCH}), \chi_{R} (\text{CCCC}), \chi_{R4R} _{R3} (\text{CCCO}), \beta_{R4} (\text{HCO}), \beta_{R4} (\text{COH}), \chi_{R} \\ (\text{CCCO}), \chi_{RR4} (\text{CCOH}) \end{array} $
46	1079	1087(c.)	1083	113,4	$ \begin{array}{c} Q_{R}\left(\text{CO}\right), Q_{R1}\left(\text{OC}\right), \chi_{RR2}\left(\text{HCON}\right), \chi_{R}\left(\text{HCCH}\right), \\ Q_{R}(\text{CC}), \chi_{RR1}\left(\text{HCOC}\right), \chi_{RR2}\left(\text{HCCO}\right), \beta_{R}\left(\text{CCH}\right), \\ \chi_{R}\left(\text{CCCH}\right), \chi_{RR1}\left(\text{COCO}\right), \beta_{R4}\left(\text{COH}\right), \chi_{RR4}\left(\text{HCCH}\right) \end{array} $
47	1091	1105	1101	41,9	Q _{R R3} (CO), β _{R R3} (COH)
48	1115	1125(сл.)	1131	259,5	$\begin{array}{c} Q_{R1}\left(\text{OC}\right), Q_{RR1}\left(\text{CO}\right), Q_{RR3}\left(\text{CO}\right), Q_{R4}\left(\text{CO}\right), \\ \beta_{R4}\left(\text{COH}\right) \end{array}$
49	1120		1137	15,3	$Q_{R4}(CO), Q_{R}(CC), Q_{RR4}(CC)$
50	1140, 1142	1155(сл.)	1158	102,4	$\begin{array}{c} Q_{R} (\text{CC}), Q_{R} (\text{OC}), Q_{R1} (\text{OC}), Q_{RR1} (\text{CO}), \\ \chi_{R} (\text{COCH}) \end{array}$
51	1159		1168	26,6	Q_{R} (CC), Q_{R} (OC), Q_{RR4} (CC), Q_{RR3} (CO)
52	1194	1197(сл.)	1188	1,8	β_{R1} (OCH)
53	1219		1224	20,4	β _{R1} (OCH), χ _{R R1} (COCH)
54	1251	1238(сл.)	1235	7,4	$ \begin{array}{c} \chi_{RR4} \ (\text{HCCH}), \beta_{RR4} \ (\text{CCH}), \beta_{R4} \ (\text{COH}), \beta_{R4} \ (\text{HCO}), \\ \chi_{RR4} \ (\text{HCCO}), \chi_{R} \ (\text{COCH}), \beta_{R} \ (\text{CCH}), \chi_{RR2} \ (\text{HCON}), \chi_{R4} \ (\text{HCOH}), \chi_{R} \ (\text{HCOH}), \\ (\text{HCCH}) \end{array} $
55	1269	_	1269	12,9	$ \begin{array}{c} \beta_{R R3} \left({\rm COH} \right), \chi_{R R2} \left({\rm HCCO} \right), \chi_{R} \left({\rm CCCH} \right), \beta_{R} \left({\rm CCH} \right), \\ \chi_{R} \left({\rm HCCH} \right), \ \beta_{R R3} \left({\rm HCO} \right), \beta_{R R4} \left({\rm CCH} \right), \beta_{R4} \left({\rm COH} \right), \\ \chi_{R R4} \left({\rm HCCC} \right) \end{array} $
56	1274	1270(2.2)	1285	39,9	$ \begin{array}{c} \chi_{R} \ (\text{HCCH}), \ \beta_{R} \ (\text{CCH}), \ \chi_{R \ R 2} \ (\text{HCON}), \ \chi_{R \ R 2} \ (\text{HCCO}), \\ \chi_{R} \ (\text{HCCC}), \ \beta_{R \ R 3} \ (\text{COH}) \end{array} $
57	1284	- 12/0(o.c.) -	1312	11,6	$ \begin{array}{c} \beta_R \ ({\rm CCH}), \chi_R \ ({\rm HCCH}), \chi_{RR3} \ ({\rm HCOH}), \ \chi_{RR4} \ ({\rm HCCC}), \\ \chi_R \ ({\rm OCCH}), \ \chi_R \ ({\rm COCH}) \end{array} $
58	1301, 1305	1283(сл.)	1330	129,5	$ \begin{array}{c} \chi_{RR2} \ (\text{HCCO}), \chi_{R} \ (\text{CCCH}), \beta_{R} \ (\text{CCH}), \beta_{RR2} \ (\text{HCO}), \\ \chi_{RR2} \ (\text{HCON}) \end{array} $
59	1322, 1332	1310	1337	131,6	$ \begin{array}{c} \chi_{R} \ (\text{HCCH}), \chi_{R} \ (\text{HCCC}), \chi_{R R 3} \ (\text{HCCO}), \ \beta_{R} \ (\text{CCH}), \\ \beta_{R R 2} \ (\text{HCO}), \ \chi_{R R 2} \ (\text{HCON}), \ \chi_{R} \ (\text{HCOC}) \end{array} $
60	1352		1348	33,5	$ \begin{array}{c} \chi_{R} \ (\text{HCCH}), \beta_{R} \ (\text{CCH}), \chi_{R} \ (\text{OCCH}), \chi_{RR1} \ (\text{HCCO}), \\ \beta_{RR2} \ (\text{HCO}), \chi_{RR2} \ (\text{HCON}) \end{array} $
61	1367	1365(сл.)	1367	154,5	$ \begin{array}{c} \chi_{R \ R1} \ (\text{HCCO}), \chi_{R} \ (\text{OCCH}), \beta_{R \ R2} \ (\text{HCO}), \chi_{R} \ (\text{HCCH}), \\ \beta_{R} \ (\text{CCH}), \ \chi_{R} \ (\text{HCOC}), \chi_{R \ R1} \ (\text{HCOC}), Q_{R2} \ (\text{O=N}), \\ \chi_{R \ R2} \ (\text{HCCO}), \chi_{R \ R3} \ (\text{HCCO}), \chi_{R} \ (\text{CCCH}), Q_{R2} \ (\text{O=N}), \\ \beta_{R \ R1} \ (\text{HCO}) \end{array} $
62	_		1380	51,7	$ \begin{array}{c} \chi_{R} \ (\text{HCCC}), \ \beta_{R} \ (\text{OCH}), \ \chi_{R} \ (\text{HCCH}), \ \chi_{R R 3} \ (\text{HCCO}), \\ \chi_{R R 4} \ (\text{HCCH}), \ \chi_{R R 4} \ (\text{HCCO}), \ \beta_{R R 4} \ (\text{HCC}) \end{array} $
63	_	1387(сл.)	1391	7,2	$ \begin{array}{c} \chi_{R R2} (\text{HCCO}), \chi_{R R1} (\text{HCOC}), \chi_{R} (\text{HCCH}), \beta_{R} (\text{OCH}), \\ \chi_{R R3} (\text{HCCO}), \chi_{R} (\text{HCCC}), \beta_{R R2} (\text{HCO}), \beta_{R} (\text{CCH}), \\ \beta_{R R4} (\text{HCC}), \chi_{R R4} (\text{HCCH}) \end{array} $
64	1399	_	1401	21,4	$ \begin{array}{c} \chi_{RR2} \ (\text{HCCO}), \chi_{R} \ (\text{HCCC}), \beta_{R1R} \ (\text{OCH}), \\ \chi_{R} \ (\text{HCCH}), \beta_{R} \ (\text{OCH}), \chi_{RR3} \ (\text{HCCO}), \chi_{R} \ (\text{HCOC}) \end{array} $

Продолжение табл. 3

Окончание табл. 3

№	v _{теор} , см ⁻¹ [4]	v_{эксп}, см ⁻¹ [4]	v_{теор}, см ⁻¹	I, км/моль	Форма колебания	
65	1407	1410(сл.)	1414	4,5	$ \begin{array}{c} \chi_{R} \ (\text{HCCH}), \ \beta_{R R 1} \ (\text{HCO}), \ \beta_{R R 4} \ (\text{CCH}), \ \beta_{R R 2} \ (\text{HCO}), \\ \chi_{R} \ (\text{COCH}), \ \chi_{R R 2} \ (\text{HCCO}), \ \beta_{R} \ (\text{CCH}) \end{array} $	
66	1425	_	1425	5	$ \begin{array}{c} \chi_{RR1} \ (\text{HCOC}), \beta_R \ (\text{OCH}), \beta_R \ (\text{CCH}), \chi_R \ (\text{HCCH}), \\ \chi_{RR1} \ (\text{HCCO}), \ \chi_R \ (\text{OCCH}), \ \chi_{RR3} \ (\text{HCCO}), \\ \beta_{RR2} \ (\text{HCO}), \beta_{R4} \ (\text{CCH}), \chi_R \ (\text{CCCH}), \chi_{RR2} \ (\text{HCCO}), \\ \beta_{R4} \ (\text{HCO}) \end{array} $	
67	1430		1430	18,7	β_{R4} (COH), χ_{RR4} (HCCH), β_{R4} (CCH)	
68	1458	1445(сл.)	1445	22,4	$ \begin{array}{c} \beta_{R R 4} (\text{CCH}), \beta_{R 4} (\text{HCO}), \ \chi_{R} (\text{COCH}), \beta_{R} (\text{HCC}), \\ \beta_{R 4} (\text{COH}), \chi_{R R 4} (\text{HCCO}), \chi_{R 4} (\text{HCOH}), \chi_{R R 4} (\text{OCCH}), \\ \beta_{R R 4} (\text{HCC}), \ \chi_{R R 4} (\text{HCCH}), \chi_{R R 3} (\text{HCOH}), \\ \chi_{R R 4} (\text{CCCH}) \end{array} $	
69	1462	1466(сл.)	1454	37,1	$ \begin{array}{c} \beta_{R\ R3}\ (\text{HCO}), \chi_{R}\ (\text{HCCH}), \chi_{R}\ (\text{OCCH}), \chi_{R}\ (\text{CCCH}), \\ \chi_{R\ R4}\ (\text{HCCC}), \ \chi_{R\ R2}\ (\text{HCCO}), \ \beta_{R\ R3}\ (\text{COH}) \end{array} $	
70	1473	_	1498	2	α_{R1} (HCH), β_{R1} (OCH)	
71	1502	_	1513	1,9	α _{R1} (HCH), χ _{RR1} (COCH)	
72	_	_	1515	5	α_{R4} (HCH), χ_{RR4} (OCCH), χ_{RR4} (HCCH), χ_{RR4} (CCCH)	
73	_	_	1539	6,9	α _{R1} (HCH), χ _{RR1} (COCH)	
74	1662	1643(o.c.)	1766	415,6	Q _{R2} (O=N)	
75	1682	1658(o.c.)	1775	350,7	Q _{R2} (O=N)	
76	_	2838(cp.)	2868	14,8	q _{R4} (CH), q _R (CH)	
77	_	2862(am)	2874	47,2	q _{R1} (CH)	
78	—	2802(cp.)	2886	59	q _R (CH), q _{R4} (CH)	
79	—	2885(cp.)	2897	39,3	q _R (CH)	
80	_	2900(cp.)	2947	33	q _{R1} (CH)	
81	_	2928 (cp.)	2962	20,5	q _{R4} (CH)	
82	_	2938 (cp.)	2979	1,9	q _R (CH)	
83	_	2985(сл.)	2985	0,2	q _R (CH)	
84	_	2993(сл.)	3002	20,5	q _{R1} (CH)	
85	_	3005(сл.)	3010	1,3	q _R (CH)	
86	_	~3220(o.c.)	3538	40,1	q _{R4} (OH)	
87	_	~3400(o.c.)	3540	25,7	q _{R3} (OH)	

Примечание. Использованы общепринятые обозначения координат: валентные колебания связей – q, Q, плоские деформационные колебания – γ , β – с участием одного атома H, $\alpha = \alpha$ (HCH), неплоские деформационные колебания – χ .

Нитрогруппа оказывает еще более существенное влияние на область спектра 600– 1800 см⁻¹, проявляясь почти во всех нормальных колебаниях в этой области. Кроме этого, она активизирует влияние пиранозного кольца на большинство нормальных колебаний в этой области, по сравнению с метил-β-D-глюкопиранозидом [11], в котором указанные колебания в большей степени локализованы на соответствующих структурных элементах молекулы.

Рассчитанные частоты $v_{32} = 755$ и $v_{33} = 759$ см⁻¹ соответствуют неплоским колебаниям

нитрогрупп. Из-за малой интенсивности соответствующих им полос измеренного спектра их использование в качестве распознавательного признака нитрогрупп нецелесообразно.

В соответствии с результатами проведенных расчетов, нашего и [4], в диапазонах 850–890 см⁻¹ и 1260–1290 см⁻¹ проявляются колебания структурных элементов молекулы, непосредственно связанных с нитрогруппой, которые вполне могут быть рассмотрены как характерные спектральные признаки наличия в соединении нитрогрупп. Рассчитанные нами значения частот в этой области согласуются с данными работы [4], в которой они отнесены к нормальным колебаниям валентных координат Q(O-N) и плоских деформационных координат γ (O–N=O), к которым примешивается колебание Q(N=O) (1260-1290 см⁻¹). Анализ их форм указывает на значительную делокализацию этих колебаний по координатам пиранозного кольца и нитрогрупп.

Наиболее характерным спектрально-структурным признаком наличия нитрогрупп в молекуле 2,3-ди-О-нитро-метил- β -D-глюкопиранозида является присутствие интенсивных пиков в области 1620–1700 см⁻¹. Измеренному интенсивному дублету частот 1635, 1650 см⁻¹ соответствуют в нашем расчете валентные колебания Q(N=O) нитрогрупп с частотами v₇₄=1766 и v₇₅=1775 см⁻¹. По сравнению с данными работы [4] их значения оказались завышенными, что может быть объяснено ограниченностью моделей гармонического приближения и изолированной молекулы.

Ограниченность модели изолированной молекулы сказывается и на результатах расчета частот, форм и интенсивностей валентных колебаний q(O-H) гидроксильных групп, проявляющихся в высокочастотной области. В этой области ИК спектра (2850–3700 см⁻¹) рассчитанные частоты валентных колебаний связей q(C-H) и q(О-Н) завышены по сравнению с экспериментальными. Для валентных колебаний q(C-H) превышение, составляющее 4-5%, обусловлено ограниченностью модели гармонического приближения. Оно устранено масштабированием частот в этой области спектра. Сказанное отчасти справедливо и для валентных колебаний q(O-H) свободной молекулы ($v_{86} = 3538 \text{ и } v_{87} = 3540 \text{ см}^{-1}$), частоты которых также масштабированы. Тем не менее, широкая полоса сложной формы с аномально большой интенсивностью, с явно выраженным пиком (~3400 см⁻¹) и менее явным «плечом» (~3220 см⁻¹), центр тяжести которой смещен в низкочастотную сторону в измеренном спектре на величину значительно большую, чем 4-5%, указывает на наличие водородных связей в образце. Построенная нами структурно-динамическая модель изолированной молекулы не учитывает наличие водородных связей в образце, которые существенно влияют на его структуру и спектр, в первую очередь в области 3150-3600 см⁻¹, из-за чего затруднена ее интерпретация. Анализ этой области спектра и её интерпретация возможны на основе результатов моделирования для комплексов молекул 2,3-ди-О-нитро-метилβ-D-глюкопиранозида с водородной связью, но это другая, более масштабная задача. Она может быть решена только на основе использованного в данной работе метода ТФП (в этом еще одно его преимущество перед методом валентно-силового поля). Ее решение и обсуждение результатов выходит за рамки данной статьи и явится основным содержанием следующей.

Заключение

На основе построения структурно-динамической модели молекулы 2,3-ди-О-нитро-метил- β -D-глюкопиранозида установлено, что ее неплоское пиранозное кольцо имеет конформацию «кресло», как и в молекулах β -D-глюкозы, метил- β -D-глюкопиранозида. Из анализа результатов квантово-химических расчетов следует вывод о незначительном изменении его геометрии в моносахаридах при переходе от β -D-глюкозы к метил- β -D-глюкопиранозиду и далее к 2,3-ди-Онитро-метил- β -D-глюкопиранозиду.

Дан анализ спектрально-структурных признаков наличия метильной группы. Соответствующие ей полосы поглощения в ИК спектре при переходе от молекулы метил-β-D-глюкопиранозида к молекуле 2,3-ди-О-нитро-метил-β-D-глюкопиранозида не изменяют своих частотных положений, в то время как интенсивности изменяются в два раза.

Выявлены спектрально-структурные признаки наличия нитрогрупп. Наличие нитрогрупп связано с проявлением новых полос в ИК спектре и существенно влияет на значительную часть нормальных колебаний. Анализ частотных положений полос, отнесенных к валентным колебаниям связей Q(N=O) нитрогрупп, указывает на возможное влияние на них специфических межмолекулярных взаимодействий. Последнее требует дополнительной проверки.

Наблюдаемый сдвиг полосы экспериментального спектра в области валентных колебаний

связей Q(O–H) относительно рассчитанного ИК спектра в низкочастотную сторону обусловлен влиянием водородной связи, образующейся в 2,3-ди-О-нитро-метил-β-D-глюкопиранозиде.

Последовательный учет влияния водородной связи в рамках метода ТФП станет предметом нашего обсуждения в следующей статье.

Список литературы

- Кон В. Электронная структура вещества волновые функции и функционалы плотности // УФН. 2002. Т. 172, № 3. С. 336–348.
- Попл Дж. Квантово-химические модели // УФН. 2002. Т. 172, № 3. С. 349–356.
- Frisch M. J., Trucks G. W., Schlegel H. B. et al. Gaussian 03 // Revision B.03, Gaussian Inc. Pittsburgh, 2003. 302 p.
- Королевич М. В., Жбанков Р. Г. Расчет и анализ частот нормальных колебавний 2,3-ди-О-нитро-метил-β-Dглюкопиранозида // Журн. прикл. спектр. 1997. Т. 64, № 6. С. 724–728.
- Королевич М. В., Жбанков Р. Г., Сивчик В.В., Марченко Г. Н., Забелин Л. В. Анализ межмолекулярных воздействий нитратных групп в кристалле тетранитрата метил-β-D-глюкопиранозида на основе полного расчета частот и интенсивностей полос в ИК спектре // Докл. АН СССР. 1987. Т. 294, № 3. С. 629–633.
- Королевич М. В., Жбанков Р. Г. Квантовохимический расчет интенсивностей полос поглощения и интерпретация ИК спектра тетранитрата метил-β-Dглюкопиранозида // Журн. прикл. спектр. 1989. Т. 50, № 6. С. 945–951.
- 7. Korolevich M. V., Zhbankov R. G., Sivchik V. V. Calculation of absorption band frequencies and intensities in

the IR spectrum of α -D-glucose in a cluster // J. Mol. Structure. 1990. Vol. 220. P. 301–313.

- Королевич М. В., Жбанков Р. Г., Сивчик В. В., Марченко Г. Н., Забелин Л. В. Интерпретация ИК спектров α-D-галактозы на основе согласованного расчета колебательных частот и интенсивностей полос поглощения // Журн. прикл. спектр. 1992. Т. 56, № 3. С. 373–380.
- Korolevich M. V. Some results obtained using the CNDO/2 technique in the calculations of the IR spectra of polyatomic molecules. Part 2. A theoretical study of the vibrational spectrum of β-D-glucose // J. Mol. Structure. 1994. Vol. 306. P. 261–268.
- Никитин А. В., Мясникова Р. М., Андрианов В. И., Молчанов В. П., Усов А. И., Фирганг С. И., Перцин А. И. Кристаллическая и молекулярная структура тетранитрата метил-β-D-глюкопиранозида // Кристаллография. 1984. Т. 29, № 3. С. 489–493.
- Бабков Л. М., Королевич М. В., Моисейкина Е. А. Расчет структуры и ИК спектра молекулы метил-β-D-глюкопиранозида методом функионала плотности // Журн. прикл. спектр. 2010. Т. 77, № 2. С. 179–187.
- Бабков Л. М., Королевич М. В., Моисейкина Е. А. ИК спектр метил-β-D-глюкопиранозид и его интерпретация на основе построения структурно-динамической модели молекулы // Изв. Сарат. ун-та. Нов. сер. 2009. Т. 9. Сер. Физика, вып. 2. С. 13–19.
- 13. Бабков Л. М., Королевич М. В., Моисейкина Е. А. Расчет структуры и ИК спектра метил-β-D-глюкопиранозида методом функционала плотности с учетом водородной связи // Журн. прикл. спектр. 2011. Т. 78, № 2. С. 223–228.
- Бабков Л. М., Королевич М. В., Моисейкина Е. А. Водородная связь, ИК спектры и строение метил-β-D-глюкопиранозида // Журн. структур. химии. 2012. Т. 53, № 1. С. 28–35.