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There is a natural protein form, insoluble and resistant 
to proteolysis, adopted by many proteins independently 
of their amino acid sequences via specific misfolding-
aggregation process. This dynamic process occurs in 
parallel with or as an alternative to physiologic folding, 
generating toxic protein aggregates that are deposited 
and accumulated in various organs and tissues. These 
proteinaceous deposits typically represent bundles of 
β-sheet-enriched fibrillar species known as the amyloid 
fibrils that are responsible for serious pathological con-
ditions, including but not limited to neurodegenera-
tive diseases, grouped under the term amyloidoses. The 
proteins that might adopt this fibrillar conformation are 
some globular proteins and natively unfolded (or intrin-
sically disordered) proteins. Our work shows that intrin-
sically disordered and intrinsically ordered proteins can 
be reliably identified, discriminated, and differentiated 
by analyzing their polarity profiles generated using a 
computational tool known as the polarity index method 
(Polanco & Samaniego, 2009; Polanco et al., 2012; 2013; 
2013a; 2014; 2014a; 2014b; 2014c; 2014d). We also show 
that proteins expressed in neurons can be differenti-
ated from proteins in these two groups based on their 
polarity profiles, and also that this computational tool 
can be used to identify proteins associated with amy-
loidoses. The efficiency of the proposed method is high 
(i.e. 70%) as evidenced by the analysis of peptides and 
proteins in the APD2 database (2012), AVPpred database 
(2013), and CPPsite database (2013), the set of selective 
antibacterial peptides from del Rio et al. (2001), the sets 
of natively unfolded and natively folded proteins from 
Oldfield et al. (2005), the set of human revised proteins 
expressed in neurons, and non-human revised proteins 
expressed in neurons, from the Uniprot database (2014), 
and also the set of amyloidogenic proteins from the 
AmyPDB database (2014).
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INTRODUCTION

The amyloidoses are a large group of protein con-
formational diseases in which pathological intracellular 
or extracellular protein aggregation takes place largely 
because of the protein misfolding events leading to 
specific partially folded species with a strong propen-
sity to acquire more than one conformation. Although 
certain group of proteins, known as natively unfolded 
or intrinsically disordered proteins, require a high de-
gree of structural “disorder” or structural plasticity in 
their native state to favor interactions with specific li-
gands (Dunker et al., 2001; Uversky et al., 2000; Uversky, 
2013; Wright & Dyson, 1999), they also poses a delicate 
balance in which the hazy border between risky self-
aggregation and sophisticated function is easily crossed 
(Uversky et al., 2008a; Uversky, 2009a; Uversky, 2010). 
In contrast to the classic notion that foldable proteins 
require well-defined globular structure to be functional, 
genomic and proteomic analyses revealed that functional 
proteins without unique 3D structure are common, and 
the abundance of these proteins correlates directly with 
the complexity of organisms, with this property being 
present in at least 2% of archaeal, 4% of eubacterial, and 
33% of eukaryotic proteins (Hansen et al., 2006; Uver-
sky, 2010b; Xue et al., 2010; Xue et al., 2010a; Xue et 
al., 2012). Therefore, protein intrinsic disorder can be 
considered as an evolutionarily conserved phenomenon, 
which is related to some important biological functions. 
In fact, this structural property provides significant func-
tional advantages, as the intrinsically disordered regions 
may enable enhanced rates of self-assembly processes of 
viruses and bacterial groups, and play a regulatory role in 
adding new components in the process of cell growth. 
Many different types of proteins have been recognized 
as the causative agents of amyloid diseases, despite hav-
ing wide and heterogeneous structures and functions, all 
of them generate morphologically similar amyloid fibrils 
(Uversky & Fink, 2004; Xing & Higuchi, 2002). The am-
yloid fibrils are insoluble, rigid and measuring on average 
7.5 to 10 μm in length, and can be derived from specific 

*e-mail: polanco@unam.mx

Received: 13 March, 2014; revised: 25 June, 2014; accepted:  
23 November, 2014; available on-line: 12 February, 2015

Vol. 62, No 1/2015
41–55

http://dx.doi.org/10.18388/abp.2014_755



42           2015C. Polanco and others

amyloidogenic regions located within globular proteins, 
unstructured peptides (Uversky et al., 2008), intrinsically 
disordered proteins, and mostly unfolded fragments of 
foldable proteins.

In humans, some proteins such as apolipoproteins I 
and II, are classified as amyloidogenic proteins. Apolipo-
proteins require a high degree of structural disorder or 
plasticity to fulfill their biologic function and at the same 
time to avoid aggregation. For example, lipid-free apoli-
poprotein behaves as an intrinsically disordered protein 
but folds to a more ordered structure when lipids are 
taken up (Andreola et al., 2006). In amyloidoses, multi-
modal external factors (such as pH, oxidation, toxicants, 
temperature, etc.) converge independently or simultane-
ously to destabilize the 3D structure of an ordered pro-
tein or affect the conformational ensemble of intrinsical-
ly disordered proteins to induce a transition from the na-
tive (folded or intrinsically disordered) to partially struc-
tured form allowing alternative spatial arrangements of 
the same polypeptide. However, besides these external 
features, there are several intrinsic factors that play a role 
in protein structural stability, with strategically distributed 
charged residues known to act as efficient modulators 
of the aggregation process by providing repulsive forces 
that guard against a pathological conformation (Chiti et 
al., 1999).

The risk of unwanted protein aggregation, which pos-
es toxic threats to the cells, is minimized by naturally 
selected sequences of globular proteins that confer the 
properties of high stability and fast folding kinetics, both 
of which minimize the concentration of easily aggregat-
ing, partially folded proteins. However, despite the evo-
lutionary controlled protection against unwanted aggre-
gation, the misfolded proteins with pathogenic potential 
can be formed in different ways, e.g. there are proteins 
that have an intrinsic propensity to assume a pathologi-
cal conformation (e.g., transthyretin in senile amyloi-
dosis), others acquire pathological conformation when 
their concentration exceeds a specific threshold (e.g., β2 
microglobulin in chronic amyloidosis), or by a replace-
ment in the amino acid sequence of a protein (hereditary 
amyloidoses), or by a proteolytic degradation of the pre-
cursor protein, as is the case of the β-amyloid precursor 
protein (APP) in Alzheimer’s disease.

It is in this scenario that the present work introduc-
es the use of a Quantitative Structure Activity Relationship 
(QSAR) method called Polarity index (Polanco & Sam-
aniego, 2009; Polanco et al., 2012; 2013; 2013a; 2014; 
2014a; 2014b; 2014c; 2014d), which from reading the 
linear sequence of the peptide, identifies whether or 
not a peptide belongs to any of the next groups: na-
tively unfolded proteins, folded proteins, and amyloido-
genic proteins. It also allows to study the relationship 
of these proteins with neuronal proteins, both human 
and non-human. The method analyzes comprehensive-
ly, the static and dynamic aspect of the peptide, under 
consideration of a single physico-chemical property of a 
polypeptide: its polarity. This can be a competitive ad-
vantage if we consider other methods, such as CATH: 
Protein Structure (Sillitoe et al., 2013), and PSIPRED: 
Protein Sequence Analysis Workbench (McGuffin et 
al., 2000), which are a combination of prediction algo-
rithms: structural comparison (Redfern et al., 2007) and 
hidden-Markov model (HMM)-based methods (Sillitoe 
et al., 2005).

The mathematical-computational method has been 
previously used for the identification of the antimicro-
bial peptides (Izadpanah & Gallo, 2005) from the Anti-
microbial peptide database (APD2), the antiviral peptides 

(Real et al., 2004) from the AVPpred database, and the 
set of cell penetrating peptides from the CPPsite data-
base. The algorithm presented here is based on meas-
uring only the polarity or electronegativity of a peptide, 
being understood by this measure, the construction of 
an incidence matrix of polar interactions in the peptide 
from its linear sequence (Polanco & Samaniego, 2009; 
Polanco et al., 2012; 2013; 2013a; 2014; 2014a; 2014b; 
2014c; 2014d). To achieve this, the method considers 
20 amino acids classified in four polarity groups, P+, 
P-, N, and NP (which stay for polar positively charged, 
polar negatively charged, polar neutral, and non-polar), 
and counts for the impact of the interactions between 
the two amino acids. The computational tool here pre-
sented, reads the linear sequence of a peptide from N-
terminus to C-terminus (not from C-terminus to N-ter-
minus, because the incidences matrix would be different, 
see Methods and Materials section), moving one amino 
acid to the right at a time, and records these incidents 
in a matrix where the rows and columns correspond to 
the four polar groups. This generates a profile, which so 
far was proven to be an effective discriminant to identify 
proteins and peptides with strong pathogenic action. The 
following groups of proteins were studied in this work: 
natively unfolded and folded proteins from Oldfield et al. 
(Table 6), proteins of human neurons from the Uniprot 
database (Table 6), non-human neuronal proteins from 
the Uniprot database (Table 6), and amyloidogenic pro-
teins from the AmyPDB database (Table 6). These sets 
were selected with the intention of finding any structural 
polarity-based differences, between the proteins that are 
expressed in neurons and those that are actively involved 
in amyloidosis. For this reason the classification included 
proteins that are expressed in neurons of various organ-
isms and proteins expressed only in human neurons. In 
addition, the discriminative efficiency of this approach 
was evaluated (Table 7) by showing that the proposed 
computational tool can efficiently classify almost all an-
tibacterial peptides located in the APD2 database, the 
antiviral peptides from the AVPpred database, the set 
of 30 selective antibacterial peptides from del Rio et al. 
(2001), the cell penetrating peptides type: non-endocyt-
ic, endocytic, and unknown pathway, from the CPPsite 
database, and the proteins that are expressed in human 
neurons, and in non-human neurons from the UniProt 
database.

METHODS AND MATERIALS

Polarity index method was previously published by 
this group (patent-pending) (Polanco & Samaniego, 
2009; Polanco et al., 2012; 2013; 2013a; 2014; 2014a; 
2014b; 2014c; 2014d). However, in order to identify 
proteins associated with amyloidosis, the following 
modifications were made to the program. For this 
purpose, the classification of Timberlake (Timber-
lake, 1992) was used, which is the simplest known 
approach, classifying the amino acids as: acidic-polar 
P– = {D, E}, basic-polar P+ = {H, K, R}, non-polar 
NP = {A, F, I, L, M, P, V, W}, and neutral-polar N 
= {C, G, N, Q, S, T, Y}. Notice that the amino acid 
G has been considered in the neutral-polar group. We 
adopted this classification for being a general classifi-
cation and much oriented towards the polar profile. 
We do not opt for the Koolman & Rohm classifica-
tion, because they subdivide the four groups, to get 
seven subgroups (Koolman & Rohm, 1996). We also 
did not use other classifications (Devlin, 1992).
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Previous versions of the method were published (Po-
lanco & Samaniego, 2009; Polanco et al., 2012; 2013; 
2013a; 2014; 2014a; 2014b; 2014c; 2014d), but here we 
consolidated an improved version that outperforms pre-
vious work, for that reason, Section “Example” intro-
duces an example as the basis of the full method ex-
planation presented in section “Polarity Index Method-
Modifications”.

Example

Here we provide a detailed description of an illustrative 
example showing how the main action of a peptide/pro-
tein is identified. To find out if the protein described by 
sequence MSDAAVDTSSEITTKDLKEKKEVVEEAEN-
GRDAPANGNAENEENGEQEADNEVDEEEEEG-
GEEEEEEEEGDGEEEDGDEDEEAESATGKRAAE-
DDDDDVDTKKQKTDEDD (see Appendix A, #1: 

Eschenfeldt & Berger, 1986) belongs to the category of na-
tively unfolded proteins, according to polarity index meth-
od, it is necessary to follow the next steps:

1. Convert the above sequence to its numeric equiva-
lent according to the following rule of equivalence: The 
amino acids: H, K, and R are replaced by the number 
“1”; the amino acids: D, and E are replaced by number 
“2”; the amino acids: C, G, N, Q, S, T, and Y are re-
placed by number “3”; finally the amino acids: A, F, I, 
L, M, P, V, and W are replaced by number “4”. Note 
that the four numerical equivalents {1, 2, 3, and 4} cor-
respond to the four polar groups: [P+], [P–], [N], and 
[NP], listed in the same order. The numeric equivalence 
of the aforementioned sequence is: 43244423332433124
12112442242331244433342322332324232422222233222
22222323222232222242343311442222222423113132222.

2. Read the resulting numerical sequence, from N-
terminus to C-terminus, moving one position at a time. 

Each pair is considered as an element (i,j) of matrix 
Q[i,j]. For this example, the first pair is (i,j) = (4,3), the 
second pair will be (i,j) = (3,2), and so on until the last 
pair (i,j) = (2,2) is reached. Note that the pairs (i,j) cor-
respond to a square matrix of order 4, that we named 
matrix Q[i,j], and where element i represents the row, 
and j the column of matrix Q[i,j]. Note that, if the read-
ing order had been changed, i.e. from N-terminus to C-
terminus, the matrix Q[i,j] would have been different.

Table 1. Polarity matrix P[i,j].

P+ P– N NP

P+ 0.0403729603 0.0193006992 0.0546386950 0.0600466207
P- 0.0190209784 0.0336596742 0.0429836847 0.0514685325
N 0.0552913770 0.0456876457 0.1129137501 0.1103962734
NP 0.0607925393 0.0491375290 0.1154312342 0.1241025627
Polarity matrix P[i,j] built with the natively unfolded proteins group 
(Table 7).

Table 2. Polarity Index Method testing (natively unfolded proteins)
Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Vector (Q[i,j] + P[i,j]) of study. x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

Polar interaction 16 is not present 
from 8th to 13th, or 15th or 16th positions.

× × × × × × × ×

Polar interaction 15 is not present in 
7th, or from 10th to 16th positions. × × × × × × × ×

Polar interaction 14 is not present in 
1st or 3rd positions × ×

Polar interaction 13 is not present in 
4th or 15th or 16th positions. × × ×

Polar interaction 12 is not present 3rd, 
from 9th to 11th, and from 13th to 16th 
positions.

× × × × × × ×

Polar interaction 11 is not present 
from 6th to 8th, and from 14th to 16th 
positions.

× × × ×

Polar interaction 10 is not present in 
1st, 2nd, and 15th positions. × × ×

Polar interaction 9 is not present in 
1st, 2nd, 14th, and 16th positions. × × × ×

Polar interaction 8 is not present in 
1st, 2nd, 14th, and 16th positions. × × × ×

Polar interaction 7 is not present in 
1st, 3rd, 4th, and 7th positions. × × × ×

Polar interaction 6 is not present in 
2nd, 3rd, 5th, 7th, and 8th positions. × × × × ×

Polar interaction 5 is not present in 7th 

position. ×

Polar interaction 4 is not present in 
5th, and 15th positions. × ×

Polar interaction 3 is not present in 
1st, and 3rd, and 14th positions. × × ×

Polar interaction 2 is not present from 
1st to 3rd, and from 5th to 7th, and 9th, 
and 12th positions.

× × × × × × × ×

Polar interaction 1 is not present in 
2nd, 4th, and 8th positions. × × ×

Natively unfolded proteins testing by polarity index method. (×): The polar interaction is not present in the position.
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3. Count the incidents of every (i,j) pair in matrix 
Q[i,j]. In this way matrix Q[i,j] represents the incidents 
of the numerical sequence in study. Note that pair (i,j) = 
(1,1), will have at the end the value of 3, and pair (i,j) = 
(2,3) will have the value of 12 (matrix not shown).

4. Repeat steps 2 and 3 but instead of taking only the 
sequence studied, take the group of peptides/proteins 
with the characteristics searched of interest and express 
the incidents in a matrix called P[i,j], this time to identify 

the natively unfolded protein group. As this 
group is formed by 51 proteins (Appendix 
A), once it finishes counting the incidents 
in the first peptide/protein it will carry on 
counting the incidents in the next peptide/
protein until completing the group.

5. Normalize to unity matrices Q[i,j] (ma-
trix peptide in study, matrix not shown), 
and P[i,j] (data training, Table 1).

6. Weight matrix Q[i,j] with matrix P[i,j], 
to form a new matrix (Q[i,j] + P[i,j]). Fi-
nally linearize matrix (Q[i,j] + P[i,j]). As a 

result, matrix (Q[i,j] + P[i,j]) becomes a vector (Q[i,j] + 
P[i,j]) of 16 elements, i.e. {6, 7, 10, 8, 11, 14, 16, 9, 15, 
2, 1, 12, 3, 13, 5, 4}. Note that we obtain n vectors, 
where n is the number of peptides in study.

7. Compare the vector with rules in Table 2. For this 
example, all the rules are accepted, and therefore this 
protein is considered as a natively unfolded protein can-
didate.

Table 4. Polarity Index Method testing (natively folded proteins)

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Vector (Q[i,j] + P[i,j]) of study. x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

Polar interaction 12 is present from 1st 
to 4th positions. ✔ ✔ ✔ ✔

Polar interaction 5 is not present in 
11th 14th positions. × ×

Polar interaction 16 is not present 
from 5st to 16rd positions. × × × × × × × × × × × ×

Polar interaction 15 is not present 
from 5st to 16rd positions. × × × × × × × × × × × ×

Polar interaction 12 is not present 
from 5st to 16rd positions. × × × × × × × × × × × ×

Polar interaction 14 is not present 1st, 
2nd, and from 14th to 16rd positions. × × × × × ×

Polar interaction 13 is not present 
from 1st to 3rd, and from 13th to 16th 
positions.

× × × × × × ×

Polar interaction 16 is not present 
from 1st to 3rd, and from 13th to 16th 
positions.

× × × × × × ×

Polar interaction 9 is not present from 
1st to 4th , and 16th positions. × × × ×

Polar interaction 8 is not present 
from 1st to 3rd , and from 14th to 16th 
positions.

× × × × × ×

Polar interaction 11 is not present 
from 9th to 11th, and from 14th to 16th 
positions.

× × × × × ×

Polar interaction 7 is not present from 
1st to 4th , and 16th positions. × × × × ×

Polar interaction 3 is not present from 
1st to 4th positions. × × × ×

Polar interaction 6 is not present from 
1st to 8th positions. × × × × × × × ×

Polar interaction 5 is not present from 
1st to 8th positions. × × × × × × × ×

Polar interaction 2 is not present from 
1st to 8th positions. × × × × × × × ×

Polar interaction 5 is not present 10th 
position. ×

Polar interaction 4 is not present 
from 1st to 3rd , and from 14th to 16th 
positions.

× × × × × ×

Polar interaction 1 is not present from 
1st to 5th , and 9th and 10th positions. × × × × × × ×

Natively folded proteins testing by polarity index method. (✔): The polar interaction is present in the position. (×): The polar interaction 
is not present in the position.

Table 3. Polarity matrix P[i,j].
P+ P– N NP

P+ 0.0196416602 0.0187026914 0.0405097269 0.0556864999
P- 0.0180894900 0.0184727404 0.0386701152 0.0534828007
N 0.0426559374 0.0399156846 0.1148414314 0.1327776164
NP 0.0544792563 0.0518156551 0.1365909725 0.1618089527
Polarity matrix P[i,j] built with the natively folded proteins group (Table 7).
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8. If this same sequence is verified with matrix P[i,j] 
from Table 3 corresponding to the set of natively folded 
proteins (steps 2–3), and P[i,j] from Table 5 correspond-
ing to the set of amyloidogenic proteins (steps 2–3), the 
method will find that it is not accepted in neither of 
these two groups of proteins.

Polarity Index Method-Modifications

The polarity index method (Polanco & Samaniego, 
2009; Polanco et al., 2012; 2013; 2013a; 2014; 2014a; 
2014b; 2014c; 2014d), essentially extracts a polarity pro-
file, in the most comprehensive form that we think is 
possible, from a linear sequence of the peptide/protein, 
where a count of 16 possible polar interactions is carried 
out based on the 20 amino acids classified in 4 polarity 
groups. This count is done by reading pair incidents of 
amino acids that are observed when slicing the query se-
quence from N-terminus to C-terminus.

Here we describe the modifications to the original po-
larity index method (Polanco & Samaniego, 2009; Polan-
co et al., 2012; 2013; 2013a; 2014; 2014a; 2014b; 2014c; 

2014d), to identify natively unfolded proteins 
(identified in red color), natively folded proteins 
(identified in blue color), and amyloidogenic pro-
teins (identified in green color).

(A) Natively unfolded proteins

Building matrix P[i,j] with the entire protein 
set of natively unfolded proteins. When polarity 
matrix P[i,j] was concluded, it was normalized to 
unity (Table 1), and the matrix Q[i,j] contained 
the profile of incidents for each sequence under 
study (Table 7).

Polarity index method qualified as the natively un-
folded proteins candidates, those proteins in vector 
(Q[i,j] + P[i,j]) that complied with the following rules ex-
pressed in Table 2.

(B) Natively folded proteins

Building matrix P[i,j] with the entire protein set of 
natively folded proteins. When polarity matrix P[i,j] was 
completed, it was normalized to unity (Table 3), and the 
matrix Q[i,j] contained the profile of incidents for each 
sequence under study (Table 7).

Polarity index method qualified as the natively folded 
proteins candidate, those proteins in the vector (Q[i,j] + 
P[i,j]) that complied with the rules in Table 4.

(C) Amyloidogenic proteins

Building matrix P[i,j] with the entire protein set of 
amyloidogenic proteins. When polarity matrix P[i,j] was 
completed, it was normalized to unity (Table 5), and the 

Table 5. Polarity matrix P[i,j].
P+ P– N NP

P+ 0.0171457380 0.0181543119 0.0418557748 0.0577407964
P- 0.0186585989 0.0234493185 0.0337871909 0.0529500768
N 0.0453857780 0.0355521925 0.1177508831 0.1243066043
NP 0.0539586470 0.0519415028 0.1313666105 0.1722138226
Polarity matrix P[i,j] built with the natively amyloidogenic proteins group 
(Table 7.

Table 6. Polarity Index Method testing (amyloidogenic proteins)
Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Q[i,j] + P[i,j] vector of study. x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

Polar interaction 16 is not present in 
2nd  and from 4th to 16th positions. × × × × × × × × × × × × × ×

Polar interaction 15 is not present 
from 5th to 16th  positions. × × × × × × × × × × × × ×

Polar interaction 14 is not present 
in 9th, and from 1st to 4th, 13th to 16th  
positions.

× × × × × × × × ×

Polar interaction 13 is not present 
from 1st to 4th , 8th, and from 10th to 
16th  positions.

× × × × × × × × × × × ×

Polar interaction 1 is not present from 
1st to 13th positions. × × × × × × × × × × × × ×

Polar interaction 12 is not present 1st , 
and 5th to 16th positions. × × × × × × × × × × × × ×

Polar interaction 11 is not present 5th, 
and 7th to 16th positions. × × × × × × × × × × ×

Polar interaction 10 is not present in 
14th, and from 1st to 7th positions. × × × × × × × ×

Polar interaction 9 is not present from 
1st  to 5th, 11th, and from 14th to 16th 

positions.
× × × × × × × × ×

Polar interaction 8 is not present from 
1st  to 4th, 10th, and from 12th to 14th 

positions.
× × × × × × × ×

Polar interaction 7 is not present from 
1st  to 8th positions. × × × × × × × ×

Polar interaction 1 is not present from 1st  to 
13th positions. × × × × × × × × × × × × ×

Natively amyloidogenic proteins testing by polarity index method. (✔): The polar interaction is present in the position. (×): The polar 
interaction is not present in the position.
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resulting matrix Q[i,j] contained the profile of incidents 
for the sequence under study (Table 7).

Polarity index method qualified as the amyloidogenic 
protein candidates, those proteins in the vector (Q[i,j] + 
P[i,j]) that complied with the rules in Table 6.

Trial Data Preparation

A comprehensive and differentiated set of peptides 
and proteins was designed to test the groups studied 
(Table 7). Each group was classified for its multiple or 
unique action (entry # 1, Table 7). In the remaining cas-
es (entries # 2–7, Table 7), we checked the experimental 
qualifications given in each database.

Linear matches

All the proteins and peptides listed in the databases 
described above (see Section 2.3) were used to find 
some peculiar amino acid patterns in their sequences. 
By means of a data mining algorithm based on graphs 
named Subdue system, (Cook & Holder, 1994; Kukluk et 
al., 2007; You et al., 2006), we searched for matches of 
dipeptides, tripeptides, and so on, up to stretches of ten 
amino acids in length.

Test Plan

The discriminative efficiency of the polarity index 
method is determined from calculating two factors: (i) 
the percentage of success in the identification of the 
target group, and (ii) the percentage of mistakes in the 
identification of the other groups. In this sense, the 
method must be efficient in identifying the target group 

and simultaneously rejecting those candidates which are 
not part of this target group.

Graphics

The polarity matrices of each group studied (Tables 1, 
and 3), expressed in relative frequency distribution, are 
interpreted in terms of smoothed curves. Graphs pre-
sented in Figs. 1 and 2 can be compared evaluating only 
two states:

 Profiles are considered similar when all their concavi-
ties, turning points and points of maximum and mini-
mum match for the 16 polar interactions.

 Profiles are considered as dissimilar when the com-
pared curves do not match and differ from each other 
in their concavities, inflection points and points of maxi-
mum or minimum for the 16 possible interactions.

It is important to emphasize that the comparison of 
these three groups is interpreted with smoothed curves 
and not with histograms, as the purpose is only to iden-
tify their concavities and the maximum or minimum in-
flection points in the 16 possible interactions (Section 
“Natively folded proteins”). These graphs provide bet-
ter and more understandable information on the role of 
polarity as the main profile to identify the key function 
of a peptide or protein. The polar interactions (X-axis, 
Figs. 1 and 2) indeed form a discrete set, the only dense 
set is the group of real numbers, however, the level of 
discretization in the X-axis set can be considered a con-
tinuum as there are no intermediate elements, so the re-
lation between polar interactions (X-axis) and their rela-
tive frequency can be expressed with a smoothed curve.

Table 7. Test databases.

# Database Classification Reference

1 APD2

The peptides were classified as unique or multiple action peptides according to the following 
criteria: (i) Unique. A peptide that is only located in a subgroup of the APD2 database, and (ii) 
Multiple. A peptide that is located in two or more subgroups of this database.
From all 3636 peptides studied and classified in this database, we found the following peptides 
with multiple action on: 149 Gram – ONLY, 1711 Gram +/Gram - ONLY, 315 Gram + ONLY, 141 
cancer cells, 744 fungi, 244 mammalian cells, 39 chemotaxis; and 1059 with single action on: 111 
Gram – ONLY, 213 Gram + ONLY, 518 Gram +/Gram - ONLY, 20 cancer cells, 88 fungi, 88 HIV, 11, 
and mammalian cells, from the database accessed on March 11, 2012.

Wang & Wang, 2009

2 CPPsite

520 cell penetrating peptides were classified from the database by their uptake mechanism of 
which 22 peptides exhibited an endocytic pathway, 93 a non-endocytic pathway, and 405 an 
unknown pathway. The database presents a record of amino acids with lowercase letters, some 
inconsistency in the legends of the uptake mechanism, and sometimes duplicated sequences. 
All inconsistencies were handled as unknown pathway and did not represent more than 7% of 
the total records from the database accessed on March 11, 2013.

Gautam et al., 2012

3 Oldfield et al. 148 proteins: 51 natively unfolded proteins, and 97 natively folded proteins.
Oldfield et al., 2005 
supplementary 
material

4 Uniprot 755 human revised proteins expressed in neurons, and 2879 non-human revised proteins 
expressed in neurons, from the database accessed on March 11, 2014.

Magrane & Uniprot, 
2011

5 AmyPDB

15 of 1705 proteins originally classified in several amyloid protein families: 
α-Fibrinogen,  α-Synuclein, Synelfin,  Amyloid Precursor Protein (APP),  Apolipoprotein A-1 
(ApoA1),  Atrial Natriuretic Factor (ANF),  β2 Microglobulin (Beta2M),  Bri2,  C Protein (SP-C), 
Calcitonin (CT), Cystatin C, Gelsolin, Het-S, Huntingtin (htt), Immunoglobulins, Insulin, Islet 
Amyloid Polypeptide (IAPP), Amylin, Lactadherin, Lactoferrin, lactotransferrin, Lysozyme, 
Microcin E492, New 1, Parkin, Prion Protein (PrP), Prolactin (PRL), Rnq 1, Serpin, Serum amyloid 
A (SAA), Sup35, or eRF2, or eRF3, Tau, Transthyretin (TTR), Ure2, or Ure2p, stored in AmyPDB 
database (Pawlicki et al., 2008), and restricted to: (i) Amyloid  formed in vivo  (the precursor 
protein, or a specific sub-segment, forms fibrils in human), and (ii) Amyloid formed in vitro (the 
polypeptide forms fibrils under experimental conditions), from the database accessed on March 
11, 2014.

Pawlicki et al., 2008

6 del Rio et al. 30 selective Cationic Amphipathic Antibacterial Peptides (SCAAP).
del Rio et al., 2001 
Table 2 and Table 2A, 
Polanco et al., 2014

7 AVPpred
From Thakur et al. work (2012) we took 60 validated and experimental peptides from 1245 
antiviral peptides. Those peptides were evaluated with 25 physico-chemical properties (Thakur 
et al., 2012), from the database accessed on March 11, 2013.

Thakur et al., 2012

Description of peptides and proteins used to verify the efficiency of the polarity index method.
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Polarity matrix

It is worth mentioning that the square matrix P[i,j] is 
neither symmetric nor skew-symmetric. A previous work 
on the characterization of SCAAP evidenced this fact 
(Polanco & Samaniego, 2009; Polanco et al., 2012; 2013; 
2013a; 2014; 2014a; 2014b; 2014c; 2014d), and a simi-
lar work using the elements of this matrix related to the 

formation of copolymers can be found in (Mosqueira et 
al., 2012).

Rules Polarity index method

The rules in Tables 2, 4 and 6 are the result of the 
inspection of the n vectors (Q[i,j] + P[i,j]) obtained in 
Section “Example”, entry 7, that search the incidents 

Figure 1. Comparison of polar group distribution. X-axis corresponds to the 16 polar interactions.
Human neuronal proteins: Set of sequences expressed in neurons located only in humans (Table 7). Non human neuronal proteins: Set 
of sequences expressed in neurons located in all living organisms, excluding human beings (Table 7). Natively folded proteins: Set of na-
tively folded proteins (Table 7).

Table 8. Polarity index matches by pathogenic action (Natively unfolded proteins).

Data-
base APD2 APD2 APD2 APD2 APD2 APD2 APD2 APD2 APD2 AmyPDB

Total
Hits

Anti-Gram+ 
ONLY 

peptides

Anti-
Gram– 
ONLY 

peptides

Anti-Gram+/ 
Gram– 

peptides
Antifungal 
peptides

Anti-
chemotaxis 

peptides

Anti-
parasites 
peptides

Anti-
Cancer 

cells 
peptides

Anti-
mammalian 

cells 
peptides

Anti-
HIV

Amyloid 
proteins

Unique 
action

45
213

28
111

99
518

11
88

0
0

0
9

9
20

2
11

1
88

5
15

Multiple 
action

70
315

37
149

347
1711

144
744

12
39

8
47

9
20

2
11

0
0

0
0

Data-
base del Rio AVPpred CPPsite CPPsite CPPsite Oldfield Oldfield Uniprot Uniprot %

Total
 Hits

Selective 
Cationic 

Amphipatic 
anti- 

bacterial 
peptides

Antiviral 
peptides

Cells 
penetrating 

peptides 
Non-

endocytic 
pathway

Cells 
penetrating 
Endocytic 
pathway 
proteins

Cells 
penetrating

Unknown 
pathway 
proteins

Natively 
unfolded 
proteins

Natively 
folded 

proteins

Human 
neuronal 
proteins

Non 
human 

neuronal 
proteins

Unique 
action

2
30

9
60

17
93

2
22

0
0

37
51

23
97

278
755

0
0 73

Multiple 
action

0
0

0
0

0
0

0
0

85
405

0
0

0
0

0
0

1077
2879

Matches found by Polarity Index method for natively unfolded proteins in both unique and multiple action peptide groups. Unique action: Pep-
tides with pathogenic action against only one group. Multiple action: Peptides with pathogenic action against two or more groups. (%): Percent-
age hits/total peptides. Database: Sets described in Table 7.
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(or lack of them) in each of the 16 possible polar in-
teractions for each of the 16 positions. As a result the 
number of possible options is much less than 216 in all 
cases.

Statistical tests

The purpose of the statistical tests is to verify if the 
position of the inflection points is a bias for the groups 
of the Figs. 1 and 2, for that the test considers the ma-
trices P[i,j] of the groups compared graphically in those 
figures. The variable being evaluated is the position of 

the inflection points. The statistical test used is the Kol-
mogorov-Smirnov test (Siegel, 1970) with α = 0.01.

RESULTS

The application of the polarity index method to iden-
tify the target protein groups described in the Methods 
and Materials section included the verification of its dis-
criminant ability and the graph similarity analysis (Sec-
tion “Linear matches”), showing the following efficiency 
results:

Table 9. Polarity index matches by pathogenic action (Natively folded proteins).
Database APD2 APD2 APD2 APD2 APD2 APD2 APD2 APD2 APD2 AmyPDB

Total
Hits

Anti-Gram+ 
ONLY 

peptides

Anti-Gram– 
ONLY 

peptides

Anti-Gram+/ 
Gram– 

peptides

Antifungal 
peptides

Anti-
chemotaxis 

peptides

Anti-
parasites 
peptides

Anti-Cancer 
cells peptides

Anti-
mammalian 

cells peptides

Anti-
HIV

 Amyloid 
proteins

Unique 
action

36
213

13
111

57
518

9
88

0
0

1
9

0
20

3
11

5
88

5
15

Multiple 
action

48
315

24
149

233
1711

82
744

8
39

3
47

13
141

45
244

0
0

0
0

Database del Rio AVPpred CPPsite CPPsite CPPsite Oldfield Oldfield Uniprot Uniprot %
Total
 Hits

Selective 
Cationic 

Amphipatic 
antibacterial 

peptides

Antiviral 
peptides

Cells 
penetrating 

peptides Non-
endocytic 
pathway

Cells 
penetrating 
Endocytic 
pathway 
proteins

Cells 
penetrating

Unknown 
pathway 
proteins

Natively 
unfolded 
proteins

Natively 
folded 

proteins

Human 
neuronal 
proteins

Non 
human 

neuronal 
proteins

Unique 
action

3
30

3
60

3
93

0
22

0
0

10
51

69
97

431
755

0
0

72

Multiple 
action

0
0

0
0

0
0

0
0

53
405

0
0

0
0

0
0

1571
2879

Matches found by Polarity Index method for natively folded proteins in both unique and multiple action peptide groups. Unique action: Peptides 
with pathogenic action against only one group. Multiple action: Peptides with pathogenic action against two or more groups. (%): Percentage hits/
total peptides. Database: Sets described in Table 7.

Figure 2. Comparison of polar group distribution. X-axis corresponds to the 16 polar interactions.
Natively folded proteins: extracted from Oldfield et al. (Table 7). Natively unfolded proteins: Set of natively unfolded proteins extracted 
from Oldfield et al. (Table 7), and Amyloidogenic proteins extracted from Pawlicki et al. (Table 7).
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The group of natively unfolded proteins (73%, Ta-
ble 8); the group of natively folded proteins (70%, Table 
9), and the group of amyloidogenic proteins (74%, Table 
10). For these three groups the method also showed an 
efficiency of 72% discriminating false positives (Tables 
8–10).

The polarity profiles of the protein groups: (i) human 
neuronal proteins, (ii) non-human neuronal proteins, 
(iii) neuronal proteins, and (iv) natively folded proteins 
(Fig. 1), show entire coincidence in its points of maxi-
mum, minimum and points of inflection, with the excep-

tion of interactions 8 and 9, where the natively folded 
proteins do not coincide with the other three groups. 
However, these four groups show a different profile 
with respect to the group of natively unfolded proteins, 
and amyloidogenic proteins. This is illustrated by Fig. 2 
which compares the polarity profiles of natively unfold-
ed, natively folded, and amyloidogenic proteins, showing 
that these profiles are dissimilar, since their points of in-
flection and maximum/minimum are not coincidental in 
any of the 16 polar interactions, for the three groups of 
proteins (Fig. 2).

Table 10. Similarities among groups.

# Pubmed AmyPDB database Polarity index 
method

Polarity index me-
thod

Polarity index
method Reference

Amyloidogenic 
proteins

Natively unfolded 
proteins Natively folded proteins

1 2881207 A4-HUMAN ✔ ✔ ✔ Kang et al., 1987

2 6203042 ANF_HUMAN ✔ × ✔ Oikawa et al., 1984

3 6406984 APOA1_HUMAN ✔ × ✔ Shoulders et al., 1983

4 3312414 B2MG_HUMAN ✔ × ✔ Güssow et al., 1987

5 3495457 CYTC_HUMAN × × × Abrahamson et al., 1987

6 3020431 GELS_HUMAN ✔ × ✔ Kwiatkowski et al., 1986

7 2651160 IAPP_HUMAN × × × Mosselman et al., 1989

8 10391242 ITM2B_HUMAN ✔ × ✔ Vidal et al., 1999

9 8639264 MFGM_HUMAN × ✔ × Couto et al., 1996

10 3755672 PRIO_HUMAN × ✔ × Kretzschmar et al., 1986

11 6260780 PRL_HUMAN ✔ ✔ ✔ Cooke et al., 1981

12 3312414 Q540F8_HUMAN ✔ × ✔ Güssow et al., 1987

13 3312414 Q6IAT8_HUMAN ✔ × ✔ Güssow et al., 1987

14 3839415 SAA_HUMAN ✔ × ✔ Sipe et al., 1985

15 6093805 TTHY_HUMAN ✔ ✔ ✔ Mita et al., 1984

Amyloidogenic proteins identified by polarity index method from the AmyPDB database (Pawlicki et al., 2008). PUBMED: National Center for 
Biotechnology Information, U.S. National Library of Medicine http://blast.ncbi.nlm.nih.gov/ in database: Swiss-Prot (swissprot), accessed March 11, 
2014. AmyPDB database: Identification in AmyPDB database (Table 6). Polarity index method: (×): Protein not accepted by polarity index method 
in this set of proteins. (✔): Protein accepted by polarity index method in this set of proteins.

Table 10. Polarity index matches by pathogenic action (amyloidogenic proteins).
Database APD2 APD2 APD2 APD2 APD2 APD2 APD2 APD2 APD2 AmyPDB

Total
Hits

Anti-Gram+ 
ONLY 

peptides

Anti-Gram– 
ONLY 

peptides

Anti-Gram+/ 
Gram– 

peptides
Antifungal 
peptides

Anti-
chemotaxis 

peptides

Anti-
parasites 
peptides

Anti-Cancer 
cells 

peptides

Anti-
mammalian 

cells peptides
Anti-
HIV

 Amyloid 
proteins

Unique 
action

10
213

0
111

22
518

0
88

0
0

0
9

0
20

0
11

1
88

11
15

Multiple 
action

15
315

1
149

58
1711

16
744

1
39

2
47

5
141

10
244

0
0

0
0

Database del Rio AVPpred CPPsite CPPsite CPPsite Oldfield Oldfield Uniprot Uniprot %

Total
 Hits

Selective 
Cationic 

Amphipatic 
antibacterial 

peptides

Antiviral 
peptides

Cells 
penetrating 

peptides Non-
endocytic 
pathway

Cells 
penetrating 
Endocytic 
pathway 
proteins

Cells 
penetrating

Unknown 
pathway 
proteins

Natively 
unfolded 
proteins

Natively 
folded 

proteins

Human 
neuronal 
proteins

Non 
human 

neuronal 
proteins

Unique 
action

0
30

2
60

2
93

0
22

0
0

2
51

17
97

100
755

0
0 74

Multiple 
action

0
0

0
0

0
0

0
0

13
405

0
0

0
0

0
0

346
2879

Matches found by Polarity Index method for amyloidogenic proteins in both unique and multiple action peptide groups. Unique action: Peptides 
with pathogenic action against only one group. Multiple action: Peptides with pathogenic action against two or more groups. (%): Percentage 
hits/total peptides. Database: Sets described in Table 7.
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Only one of the 15 amyloidogenic proteins is not as-
sociated with the other two groups (see Table 10, item 
7).

The data mining analysis (see Section “Linear match-
es”) did not provide any reliable pattern on the linear 
sequences of peptides and proteins. In all cases the pat-
terns found in a particular group of peptides were also 
repeated in the other groups.

Assuming that the statistical test used and the extent 
of the samples are appropriate, we show that the simi-
larity in the three groups compared in Fig. 1 correlates 
with the position of the occurrence of the inflection 
points, and that the lack of similarity between the three 
groups in Fig. 2 is also verified in the statistical test.

DISCUSSION

In the past few years, advances in molecular biology, 
proteomics and bionformatics have combined to im-
prove our understanding of the amyloidoses as a con-
formational disease. Isolation of the protein components 
of natural amyloids and the chemical characterization of 
these components are indispensable investigative tools, 
because modern classification of amyloidosis is based 
on the nature of the precursor of the protein that form 
the fibrillar deposits. Although these proteins are unre-
lated and diverse, all produce amyloid deposits with a 
common cross-β structure and similar fibrillar morphol-
ogy. The number of recognized amyloidogenic proteins 
is ever expanding, and there are more than 30 amyloid 
proteins in the AmyPDB database (June 06, 2014) (Paw-
licki et al., 2008). These proteins have the capacity to ac-
quire more than one spatial conformation and have been 
recognized as the causative agents of various amyloid 
diseases, posing increasing clinical difficulties in formu-
lating a correct diagnosis, appropriate treatment, asses 
prognosis and offer genetic counsel when appropriate.

In this study, polarity index method has shown to be 
an effective discriminant in the identification of intrinsi-
cally disordered (natively unfolded), natively folded, amy-
loidogenic and neuronal proteins. Therefore, we think 
that the method can have the following applications: (i) 
to automate the subsystem that extracts the “template” 
of the group of proteins/peptides in training, becoming 
a self-learning algorithm; (ii) to establish a website to en-
able any user to test any group of proteins and peptides 
in FASTA format, and (iii) to enable the method to be 
executed under parallel computing, to explore the total 
combinatorial divergence of proteins/peptides of a cer-
tain length, (20n, where n < 13 is the maximum length 
of the peptide or protein), this will allow to scale this 
method toward understanding “shortcuts” that nature 
“found” in the construction of functional proteins and 
peptides.

An important issue is to understand the reasons be-
hind the effectiveness of polarity, the simple physico-
chemical property, to differentiate proteins in different 
structural groups. The two graphs included in this work 
point out a high correlation between the polar profile 
of the studied groups and the localization and concavity 
around the inflection points. If the matrices used here 
were symmetric, some of these points will surely be cata-
strophic bifurcation points. However, the matrices are 
not symmetric, at least not under this four polar group 
classification. This is a subject this team is currently 
working on, apart from exploring the construction of an 
incidence matrix based on seven polarity groups (Kool-
man & Rohm, 1996).

CONCLUSIONS

The discriminative efficiency of the polarity index 
method aimed at the identification of natively unfolded, 
natively folded, and amyloidogenic proteins, makes it a 
useful computational tool as a first filter in the analysis 
of these protein groups, effectively reducing the number 
of experimental tests in laboratory. The method also al-
lows the identification of other protein groups, such 
as the human neuronal proteins by their polar profile, 
opening the possibility to differentiate human neurons 
by their proteins.

Availability

The source programs are given as “supplementary ma-
terial”. The sets of natively unfolded proteins, natively 
folded proteins, and amyloidogenic proteins are given 
as Appendix section, at the end of this manuscript.
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