Allelopathic Activity of Dehulled Rice and its Allelochemicals on Weed Germination

Article Preview

Abstract:

In this study, the allelopathic potential of dehulled rice, rice, and hulls of rice on germination of weeds was evaluated in laboratory. Phenolic acids in growth media of these plants were also identified and quantified using HPLC. Identified allelochemicals were reversely tested for phytotoxic effects on germination and seedling growth of barnyardgrass, lettuce, radish and rice. The results showed that the inhibitory effects of dehulled rice were stronger than those of hulls and rice. Dehulled rice caused 66.7% and 50.6% reduction in radish root length and lettuce shoot height, respectively. Dehulled rice showed strong inhibitory effects on root length of lettuce and shoot height of radish while hulls and rice exhibited stimulation. Regarding phenolic identification, vanillin and vanillic acid were detected as allelochemicals in root exudates of rice and tested plants. The results revealed that most of the vanillin and vanillic acid treatments showed high inhibitory effects on germination rates and seedling growth of lettuce and radish, high stimulatory activity on root elongation of rice. Vanillic acid (100 ppm and 200 ppm), vanillin (100 ppm) and their mixture (200 ppm) completely inhibited survival of lettuce. The findings indicate the allelopathic potential of dehulled rice which can be used for identification of more phytotoxins to produce bioherbicides in agricultural practices.

Info:

Pages:

1-10

Citation:

Online since:

September 2016

Export:

* - Corresponding Author

[1] H.K. Abbas, T.K. Tanaka, S.O. Duke, et al., Susceptibility of various crop and weed species to AAL-toxin, a natural herbicide, Weed Technol. 9 (1995) 125-130.

DOI: 10.1017/s0890037x0002306x

Google Scholar

[2] M. Olofsdotter, Allelopathy of rice, International Rice Research Institute, Bill Hardy publisher, Domenic, Los Banos, Phillipines, 1998.

Google Scholar

[3] I.M. Chung, J. Kim, and S. Kim, Evaluation of allelopathic potential and quantification of momilactone A, B from rice hull extracts and assessment of inhibitory bioactivity on paddy field weeds, J. Agric. Food Chem. 54 (2006) 2527-2536.

DOI: 10.1021/jf052796x

Google Scholar

[4] K. Moody, Weed management in rice, in: D. Pimenteal (ed.), Handbook of pest management in agriculture, 2nd edition, CRC Press Boca Raton, Florida, USA. 1991, pp.301-328.

Google Scholar

[5] N.H. Hong, T.D. Xuan, T. Eiji, et al., Evaluation of the allelopathic potential of Kava (Piper methysticum L.) for weed control in rice, Weed Biol. Manag. 2 (2002) 143-147.

DOI: 10.1046/j.1445-6664.2002.00062.x

Google Scholar

[6] T.D. Xuan, E. Tsuzuki, T. Hiroyuki, et al., Evaluation on phytotoxicity of neem (Azadirachta indica. A. Juss) to crops and weeds, Crop Prot. 23 (2004) 335-345.

DOI: 10.1016/j.cropro.2003.09.004

Google Scholar

[7] T.D. Khanh, L.H. Linh, T.H. Linh, et al., Integration of allelopathy to control weeds in rice. In: P. Andrew (ed.), Herbicides - current research and case studies in use, InTech, 2013.

DOI: 10.5772/56035

Google Scholar

[8] I.M. Chung, J.K. Ahn and S.J. Yun, Assessment of allelopathic potential of barnyard grass (Echinochloa crus-galli) on rice (Oryza sativa L.) cultivars, Crop Prot. 20 (2001) 921-928.

DOI: 10.1016/s0261-2194(01)00046-1

Google Scholar

[9] J.K. Ahn, S.J. Hahn, J.T. Kim, et al., Evaluation of allelopathic potential among rice (Oryza sativa L.) germplasm for control of Echinochloa crus-galli P. Beauv in the field, Crop Prot. 24 (2005) 413-419.

DOI: 10.1016/j.cropro.2004.09.009

Google Scholar

[10] I.M. Chung, K.H. Kim, J.K. Ahn, et al., Screening of allelochemicals on barnyardgrass (Echinochloa crus-galli) and identification of potentially allelopathic compounds from rice (Oryza sativa) variety hull extracts, Crop Prot. 21 (2002) 913-920.

DOI: 10.1016/s0261-2194(02)00063-7

Google Scholar

[11] I.M. Chung, K.H. Kim, J.K. Ahn, et al., Comparison of allelopathic potential of rice leaves, straw, and hull extracts on barnyardgrass, Agron. J. 95 (2003) 1063-1070.

DOI: 10.2134/agronj2003.1063

Google Scholar

[12] I.M. Chung, M. Ali, A. Ahmad, et al., Chemical constituents of rice (Oryza sativa) hulls and their herbicidal activity against duckweed (Lemna paucicostata Hegelm 381), Phytochem. Anal. 17 (2006) 36-45.

DOI: 10.1002/pca.879

Google Scholar

[13] D.H. Dilday, P. Nastasi, and R.J. Smith, Allelopathy observation in rice (Oryza sativa L.) to ducksalad (Heteranthera limosa), Proceed. 1989 Ark. Acad. Sci. 43(1989) 11-21.

Google Scholar

[14] D.H. Dilday, R.E. Frans, N. Semidey, et al., Weed control with crop allelopathy, Ark. Farm Res. 41 (1992)14-15.

Google Scholar

[15] D.H. Dilday, E. Lin and W.G. Yan, Identification of allelopathy in the USDA-ARS germplasm collection, Australian J. Exp. Agric. 34 (1994) 907-910.

DOI: 10.1071/ea9940907

Google Scholar

[16] D.H. Dilday, J.D. Mattice, K.A. Moldenhauer, et al., Allelopathic potential of rice germplasm against ducksalad, redstem and barnyardgrass, J. Crop Prod. 4 (2001) 287-301.

DOI: 10.1300/j144v04n02_11

Google Scholar

[17] H. Kato-Noguchi, K. Nitta, and T. Itani, Allelopathic potential of white, red and black rice cultivars, Plant Prod. Sci. 16 (2013) 305-308.

DOI: 10.1626/pps.16.305

Google Scholar

[18] Y. Ma, M. Zhang, Y. Li, et al., Allelopathy of rice (Oryza sativa L.) root exudates and its relations with Orobanche cumana Wallr. and Orobanche minor Sm. Germination, J. Plant Interact. 9 (2014) 722-730.

DOI: 10.1080/17429145.2014.912358

Google Scholar

[19] W.S. Jung, K.H. Kim, J.K. Ahn, et al., Allelopathic potential of rice (Oryza sativa L.) residues against Echinochloa crus-galli, Crop Prot. 23 (2004) 211-218.

DOI: 10.1016/j.cropro.2003.08.019

Google Scholar

[20] A.N. Seal, T. Haig and J.E. Pratley, Evaluation of putative allelochemicals in rice root exudates for their role in the suppression of arrowhead root growth, J. Chem. Ecol. 30 (2004b) 1663-1678.

DOI: 10.1023/b:joec.0000042075.96379.71

Google Scholar

[21] H. Kato-Noguchi, and T. Ino, Assessment of allelopathic potential of root exudate of rice seedlings, Biol. Plantarum 44 (2001) 635-638.

DOI: 10.1023/a:1013731828945

Google Scholar

[22] H. Mahmoodzadeh, F. Abbasi and Y. Ghotbzadeh, Allelopathic Effects of Root Exudate and Leaching of Rice Seedlings on Hedgemustard (Sisybrium officinale), Res. J. Environ. Sci. 5 (2011) 486-492.

DOI: 10.3923/rjes.2011.486.492

Google Scholar

[23] H.H. Ti, R. Zhang, M. Zhang, et al., Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages, Food Chem. 161 (2014) 337-344.

DOI: 10.1016/j.foodchem.2014.04.024

Google Scholar

[24] J.Q. Yu, S.F. Ye, M.F. Zhang, et al., Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber, Biochem. Syst. Ecol. 31 (2003) 129-139.

DOI: 10.1016/s0305-1978(02)00150-3

Google Scholar

[25] T.D. Khanh, T.D. Xuan and I.M. Chung, Rice allelopathy and the possibility for weed management, Ann. Appl. Biol. 151 (2007) 325-339.

DOI: 10.1111/j.1744-7348.2007.00183.x

Google Scholar

[26] T.D. Xuan, I.M. Chung, T.D. Khanh, et al., Identification of phytotoxic substances from early growth of barnyard grass (Echinochloa crus-galli) root exudates, J. Chem. Ecol. 32 (2006) 895-906.

DOI: 10.1007/s10886-006-9035-x

Google Scholar

[27] T. Kato, M. Tsunakawa, N. Sasaki, et al., Growth and germination inhibitors in rice husks, Phytochemistry 16 (1997) 45-48.

DOI: 10.1016/0031-9422(77)83010-0

Google Scholar

[28] T.D. Xuan, E. Tsuzuki, M. Matsuo, et al., Correlation between inhibitory exhibition and suspected allelochemicals in alfalfa (Medicago sativa L.), Plant Prod. Sci. 6 (2003) 165-171.

DOI: 10.1626/pps.6.165

Google Scholar

[29] A. Waheed, H. Ahmad and F.M. Abbasi, Different treatment of rice seed dormancy breaking, germination of both wild species and cultivated varieties (Oryza sativa L.), J. Mater. Environ. Sci. 3 (2012) 551-560.

Google Scholar

[30] J. Webb, S. Miao and X-H. Zhang, Factors and mechanisms influencing seed germination in a wetland plant sawgrass, Plant Growth Regul. 57 (2009) 243–250.

DOI: 10.1007/s10725-008-9341-0

Google Scholar

[31] E.H. Roberts, Dormancy in rice seed II: The influence of covering structures, J. Exp. Bot. 12 (1961) 430-445.

DOI: 10.1093/jxb/12.3.430

Google Scholar

[32] A.N. Seal, J.E. Pratley, T. Haig, et al., Identification and quantitation of compounds in a series of allelopathic and non-allelopathic rice root exudates, J. Chem. Ecol. 30 (2004) 1647-1662.

DOI: 10.1023/b:joec.0000042074.96036.14

Google Scholar

[33] S. Berendji, J.B. Asghari and A.A. Matin, Allelopathic potential of rice (Oryza sativa) varieties on seedling growth of barnyardgrass (Echinochloa crus-galli), J. Plant Interact. 3 (2008) 175-180.

DOI: 10.1080/17429140802032855

Google Scholar

[34] C.H. Chou and H.J. Lin, Autointoxication mechanism of Oryza sativa. 1. Phytotoxic effects of decomposing rice residues in soils, J. Chem. Ecol. 2 (1976) 353-367.

DOI: 10.1007/bf00988282

Google Scholar

[35] H. Kato-Noguchi, Allelopathic substance in rice root exudates: Rediscovery of momilactone B as an allelochemical, J. Plant Physiol. 161 (2004) 271-276.

DOI: 10.1078/0176-1617-01188

Google Scholar

[36] S. Kuwatsuka and H. Shindo, Behavior of phenolic substances in the decaying process of plants. I. Identification and quantitative determination of phenolic acids in rice straw and its decayed product by gas chromatography, Soil Sci. Plant Nutr. 19 (1973) 219-227.

DOI: 10.1080/00380768.1973.10432591

Google Scholar

[37] M. Fragasso, C. Platani, V. Miullo, et al., A bioassay to evaluate plant responses to the allelopathic potential of rhizosphere soil of wild oat (Avena fatua L.): preliminary data, Agrochimica 56 (2012) 120-128.

DOI: 10.3389/fpls.2013.00509

Google Scholar

[38] H. Wu, T. Haig, J.E. Pratley, et al., Biochemical basis for wheat seedling allelopathy on the suppression of annual ryegrass (Lolium rigidum), J. Agric. Food Chem. 50 (2002) 4567-4571.

DOI: 10.1021/jf025508v

Google Scholar

[39] H.H. Li, M. Inoue, H. Nishimura, et al., Interaction of trans-cinnamic acid, its related phenolic allelochemicals, and abscisic-acid in seedling growth and seed-germination of lettuce, J. Chem. Ecol. 19 (1993) 1775-1787.

DOI: 10.1007/bf00982307

Google Scholar

[40] B. Politycka, Phenolics and the activities of phenylalanine ammonia-lysase, phenol-beta-glucosyltransferase and beta-glucosidase in cucumber roots as affected by phenolic allelochemicals, Acta Physiol. Plant. 20 (1998) 405-410.

DOI: 10.1007/s11738-998-0027-z

Google Scholar

[41] C.H. Chou and L.L. Leu, Allelopathic substances and interactions of Delonix regia (BOJ) RAF, J. Chem. Ecol. 18 (1992) 2285-2303.

DOI: 10.1007/bf00984951

Google Scholar

[42] B. Politycka, Free and glucosylated phenolics, phenol-beta-glucosyltransferase activity and membrane permeability in cucumber roots affected by derivatives of cinnamic and benzoic acid, Acta Physiol. Plant. 19 (1997) 311-317.

DOI: 10.1007/s11738-997-0007-8

Google Scholar

[43] D.T. Patterson, Effects of allelochemicals on growth and physiological response of soybean (Glycine max), Weed Sci. 29 (1981) 53-58.

Google Scholar

[44] Z-H. Li, Q. Wang, X. Ruan, et al., Phenolics and plant allelopathy, Molecules 15 (2010) 8933-8952.

DOI: 10.3390/molecules15128933

Google Scholar