Repository logo
 

Economic modelling of flexible carbon capture and storage in a decarbonised electricity system

Accepted version
Peer-reviewed

Change log

Authors

Chyong, CK 
Reiner, DM 
Ly, R 
Fajardy, M 

Abstract

This research provides new techno-economic insights into integrating flexible combined-cycle gas turbines with post-combustion carbon capture and storage (CCGT-CCS) for low-carbon power systems. This study developed a versatile unit-commitment optimisation model of CCGT-CCS. This research highlights the model’s adaptability, accommodating diverse techno-economic configurations, feed gases (e.g., biomethane or fossil natural gas), carbon capture rates, and policy instruments. This generalisation empowers seamless application in various policy and market contexts, making the model a potent tool for researchers and policymakers. While the case study focuses on the UK, the findings are relevant for most low-carbon power systems with variable renewable supplies. Analysing the UK’s net-zero scenarios from 2030 to 2050, the economic viability of flexible CCGT-CCS was highlighted. Intertemporal flexibility proves highly valuable with greater electricity price volatility, with a total ROI range of 81–246 %, surpassing the CCGT-CCS plant’s ROI (7–64 %). A flexible solvent storage solution should be seen in the context of the overall system ‘flexibility’ requirements of a low-carbon power system. On a cost basis, solvent storage represents just a fraction of the capital costs of more “mainstream” energy storage technologies, such as lithium-ion batteries or hydro-pumped storage, while CCGT-CCS offers firm power. Overall, while seen as a rather technical solution, if abated fossil fuel generation is to be part of a future low-carbon power system, having this flexibility adds economic benefits not just to operators but also improves overall system security and complements high shares of variable renewables on the grid.

Description

Keywords

40 Engineering, 7 Affordable and Clean Energy, 13 Climate Action

Journal Title

Renewable and Sustainable Energy Reviews

Conference Name

Journal ISSN

1364-0321
1879-0690

Volume Title

188

Publisher

Elsevier BV
Sponsorship
Engineering and Physical Sciences Research Council (EP/P026214/1)