Repository logo
 

Dendrites as climbing dislocations in ceramic electrolytes: Initiation of growth

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Shishvan, SS 
Fleck, NA 
McMeeking, RM 
Deshpande, VS 

Abstract

We idealise dendrite growth in a ceramic electrolyte by climb of a thick edge dislocation. Growth of the dendrite occurs at constant chemical potential of Li+ at the dendrite tip: the free-energy to fracture and wedge open the electrolyte is provided by the flux of Li+ from the electrolyte into the dendrite tip. This free-energy is dependent on the Li+ overpotential at the dendrite tip and is thereby related to the imposed charging current density. The predicted critical current density agrees with measurements for Li/LLZO/Li symmetric cells: the critical current density decreases with increasing initial length of the dendrite and with increasing electrode/electrolyte interfacial ionic resistance. The simulations also reveal that a void on the cathode/electrolyte interface locally enhances the Li+ overpotential and significantly reduces the critical current density for the initiation of dendrite growth.

Description

Keywords

Ceramic electrolyte, Solid-state battery, Lithium dendrite, Free-energy

Journal Title

Journal of Power Sources

Conference Name

Journal ISSN

0378-7753
1873-2755

Volume Title

456

Publisher

Elsevier BV
Sponsorship
Engineering and Physical Sciences Research Council (EP/D055806/1)
Faraday Institution (via University of Oxford) (Unknown)
European Commission Horizon 2020 (H2020) ERC (206409)