DOI QR코드

DOI QR Code

Morphology Control of Active Layers for Efficient Organic Indoor Photovoltaics

광활성층 모폴로지 제어를 통한 실내광 유기태양전지의 효율 향상 연구

  • Yongchan Jang (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Soyoung Kim (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Jeonga Kim (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Jongbok Kim (Department of Energy Engineering Convergence, Kumoh National Institute of Technology) ;
  • Wonho Lee (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 장용찬 (금오공과대학교 고분자공학과) ;
  • 김소영 (금오공과대학교 고분자공학과) ;
  • 김정아 (금오공과대학교 고분자공학과) ;
  • 김종복 (금오공과대학교 에너지공학융합전공) ;
  • 이원호 (금오공과대학교 고분자공학과)
  • Received : 2022.10.19
  • Accepted : 2022.11.21
  • Published : 2022.12.31

Abstract

Recently, organic semiconductor based indoor photovoltaics have gained attention since they exhibit excellent photovoltaic performance than that of conventional Si-based photovoltaics. In this study, we synthesize the medium bandgap polymer of PTBT and optimize PTBT:PC71BM blend films by introducing solvent additives. To this end, we select DIO and CN solvent additives and vary their contents from 0 to 3 vol%. As a result, we produce the highest power conversion efficiency of 11.31% under LED 1000 lx conditions with DIO (1.5 vol%) + CN (0.5 vol%)

실내광 유기태양전지는 기존 실리콘 태양전지 대비 광전변환효율이 높은 특성 때문에 저 전력의 전자기기나 사물 인터넷의 전력원으로 각광받고 있다. 본 논문은 높은 효율을 나타내는 실내광 유기태양전지를 만들기 위해 미디움-밴드갭을 지니는 광활성층(PTBT:PC71BM)을 합성하고 이의 모폴로지를 제어하고자 하였다. 그 중 하나의 방법으로 용액 첨가제의 종류와 양(0, 1.5, 3.0 vol% DIO, 0.5 vol% CN, 1.5 vol% DIO + 0.5 vol% CN)을 달리해 실험을 진행하여 유기태양전지에 대한 특성을 조사하였다. 그 결과 1.5 vol% DIO + 0.5 vol% CN의 이중 첨가제 시스템에서 최고 효율인 11.31%이 관찰되었다.

Keywords

Acknowledgement

이 연구는 금오공과대학교 학술연구비로 지원되었다(202001630001).

References

  1. A. Tournebize, P. Bussiere, P. Wong-Wah-Chung, S. Therias, A. Rivaton, J. Gardette, S. Beaupre and M. Leclerc, Advanced Energy Materials, 3, 478 (2013).
  2. H. Yin, J. K. W. Ho, S. H. Cheung, R. J. Yan, K. L. Chiu, X. Hao and S. K. So, Journal of Materials Chemistry. A, 6, 9111
  3. H. S. Ryu, S. Y. Park, T. H. Lee, J. Y. Kim and H. Y. Woo, Nanoscale, 12, 5792 (2020).
  4. X. Xu, W. Liu, X. Luo, H. Chen, Q. Wei, J. Yuan and Y. Zou, ChemSusChem, 14, 3428 (2021).
  5. C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, Advanced Functional Materials, 11, 15 (2001).
  6. M. A. Saeed, S. H. Kim, H. Kim, J. Liang, H. Y. Woo, T. G. Kim, H. Yan and J. W. Shim, Advanced Energy Materials, 11, 2003103 (2021).
  7. J. Kim, M. A. Saeed, S. H. Kim, D. Lee, Y. Jang, J. S. Park, D. Lee, C. Lee, B. J. Kim, H. Y. Woo, J. W. Shim and W. Lee, Macromolecular Rapid Communications., 43, 2200279 (2022).
  8. F. C. Chen, Advanced Optical Materials, 7, 1800662
  9. S. Kim, M. Jahandar, J. H. Jeong and D. C. Lim, Current Alternative Energy, 2, 3
  10. E. Bundgaard and F. C. Krebs, Solar Energy Materials and Solar Cells, 91, 954 (2007).
  11. G. Li, R. Zhu and Y. Yang, Nature Photonics, 6, 153 (2012). 
  12. C. H. Y. Ho, Q. Dong, H. Yin, W. W. K. Leung, Q. Yang, H. K. H. Lee, S. W. Tsang and S. K. So, Advanced Materials Interfaces, 2, 1500166 (2015).
  13. E. F. Manley, J. Strzalka, T. J. Fauvell, T. J. Marks and L. X. Chen, Advanced Energy Materials, 8, 1800611
  14. W. Lee, H. Choi, S. Hwang, J. Y. Kim and H. Y. Woo, Chemistry A European Journal, 18, 2551 (2012).
  15. S. Kwon, H. Kang, J. Lee, J. Lee, S. Hong, H. Kim and K. Lee, Advanced Energy Materials, 7, 1601496 (2016). 
  16. C. H. Y. Ho, Q. Dong, H. Yin, W. W. K. Leung, Q. Yang, H. K. H. Lee, S. W. Tsang and S. K. So, Advanced Materials Interfaces, 2, 1500166 (2015).
  17. N. Jain, N. Chandrasekaran, A. Sadhanala, R. H. Friend, C. R. McNeill and D. Kabra, Journal of Materials Chemistry. A, 5, 24749 (2017).
  18. C. Mcdowell, M. Abdelsamie, M. F. Toney and G. C. Bazan, Advanced Materials, 30, 1707114 (2018). 
  19. H. K. H. Lee, Z. Li, J. R. Durrant and W. C. Tsoi, Applied Physics Letters, 108, 253301 (2016).
  20. Y. Gu, C. Wang and T. P. Russell, Advanced Energy Materials, 2, 683 (2012).
  21. C. Liu, X. Hu, C. Zhong, M. Huang, K. Wang, Z. Zhang, X. Gong, Y. Cao and A. J. Heeger, Nanoscale, 6, 14297 (2014).
  22. M. Cui, A. Lv and Z. Ma, ChemPhysChem, 23, 1 (2022).
  23. Y. Cui, Y. Wang, J. Berggvist, H. Yao, Y. Xu, B. Gao, C. Yang, S. Zhang, O. Inganas, F. Gao and J. Hou, Nature Energy, 4, 768 (2019).