
 Int. J. Corros. Scale Inhib., 2021, 10, no. 4, 1766–1782 1766 

    

 

The corrosion inhibition effect of a pyridine derivative for low 

carbon steel in 1 M HCl medium: Complemented with 

antibacterial studies 

M.A. Dawood,1 Z.M.K. Alasady,2 M.S. Abdulazeez,3 D.S. Ahmed,3 

G.M. Sulaiman,4 A.A.H. Kadhum,5 L.M. Shaker6 and A.A. Alamiery6,7 * 

1College of Dentistry, The University of Mashreq, Baghdad, 10001 Iraq 
2General Directorate of Education in Baghdad, The third Al-Karkh Government, Baghdad, 

10001 Iraq 
3Department of Medical Instrumentation Engineering, Al‐Mansour University College, 

Baghdad, 10001 Iraq 
4Applied Science Department, University of Technology, Baghdad, 10001 Iraq 

5University of Al-Ameed, Karbala, 56001 Iraq 
6Department of Chemical and Process Engineering, University Kebangsaan Malaysia 

(UKM), P.O. Box: 43000, Bangi, Selangor, Malaysia 
7Energy and Renewable Energies Technology Center, University of Technology, Baghdad, 

10001 Iraq 

*E-mail: dr.ahmed1975@ukm.edu.my 

Abstract 

A pyridine derivative 4-chloro-2-((pyridin-2-ylimino)methyl)phenol (CPP) was synthesized and 

its anti-corrosion effect toward low carbon steel in 1 M hydrochloric acid medium was studied by 

mass loss measurements. The protective efficiency of CPP increased along with the inhibitor 

concentration. The effect of temperature on the corrosion performance of low carbon steel was 

studied in the temperature range of 303–333 K. The inhibition efficiency of CPP decreased with 

an increase in temperature. Experimental findings from weight loss measurements confirmed that 

the anti-corrosion efficiency of CPP was significant. The adsorption of inhibitor molecules on 

low carbon steel surface obeyed the Langmuir adsorption isotherm model. Moreover, quantum 

chemical calculations were conducted based on density functional theory (DFT) in order to study 

the relationship of inhibition efficiency and the structure of the inhibitor molecule. The quantum 

chemical parameters such as EHOMO, ELUMO, the energy gap (E), electron affinity (A), ionization 

potential (I), softness (S), hardness (η), absolute electronegativity (χ), and the fraction of electron 

transferred (N), were determined. The antibacterial efficiency against selected types of bacteria, 

namely Escherichia coli and Staphylococcus aureus, was also studied. The results show that CPP 

has a significant potential to inhibit the growth of gram negative and gram positive bacteria. 
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1. Introduction 

Low carbon steel is one of the most flexible, widely utilized, and cheapest materials in almost 

all sectors [1–3]. The unavoidable damage caused by low carbon corrosion leading to an 

increase in production costs is one of the primary problems in an industrial process [4]. In 

corrosive conditions, several strategies are available for controlling and preventing corrosion 

[5–7]. An economical strategy used today to reduce corrosion attacks employs organic 

inhibitors. Corrosion inhibitors are usually employed in tiny amounts. Numerous studies 

demonstrated that the organic molecules that are most efficient for this function contain 

nitrogen, phosphorus, oxygen, and sulfur [8–11]. Their effectiveness for corrosion 

prevention is attributed to their interaction with a metal surface [12, 13]. Generally, the 

adsorption of organic molecules on the metal surface blocks corrosion sites [14–18]. Schiff 

bases are extremely efficient due to the existence of a nitrogen atom among the many 

heteroatom-containing molecules and numerous such chemicals have been reported in 

publications as possible corrosion inhibitors for metals and alloys in acid media. The 

increased use of Schiff bases as a corrosion inhibitor is mainly based on their minimal 

toxicity and simplicity of synthesis from extremely cheap precursor materials. Schiff bases 

are recognized for strong inhibition capacity and extensive study on natural compounds has 

revealed that the efficiency of Schiff bases is substantially higher than that of comparable 

aldehydes and amines. Schiff bases increase inhibitory efficiency significantly [19–22]. The 

aforesaid concerns have prompted us to use the weight loss technique in order to assess the 

inhibitory capacity, adsorption isotherm, and to perform quantum chemical calculations to 

estimate the adsorption properties of the Schiff base synthesized, namely 4-chloro-2-

((pyridin-2-ylimino)methyl)phenol (CPP), on low carbon steel surface in 1 M HCl. 

Moreover, an antimicrobial study was conducted on selected types of Escherichia coli as 

Gram-negative bacteria and Staphylococcus aureus as Gram-positive bacteria. 

2. Materials and Methods 

2.1 Materials 

The inhibitory effects of CPP were examined on mild steel with the chemical composition 

presented in Table 1.  

Table 1. Chemical composition of mild steel coupons (wt.%). 

Carbon Manganese Silicon Aluminum Sulfur Phosphorus Iron 

0.210 0.050 0.380 0.010 0.050 0.090 balance 

A mechanical press was used to cut low carbon steel into coupons with dimensions of 

4.5×2×0.5 cm. All examined coupons were washed with double-distilled water and 

degreased with acetone. The coupons were utilized for weight loss procedures. The corrosive 

medium was prepared from hydrochloric acid reagent of analytical grade and double-
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distilled water. Figure 1 shows the molecular structure of the examined inhibitor. In this 

article, CPP was synthesized similarly to the procedure in an earlier study via the reaction of 

2-aminopyridine and 5-chloro-2-hydroxybenzaldehyde. 

 
Figure 1. Molecule structure of 4-chloro-2-((pyridin-2-ylimino)methyl)phenol (CPP). 

2.2 Weight Loss Analysis 

The low carbon steel coupons were exposed to 1 M HCl medium with various concentrations 

(0.1, 0.2, 0.3, 0.4, 0.5, and 1.00 mM) of the tested inhibitor for 10 h. A thermostat aqueous 

bath at 303 K regulated the temperature. Moreover, the low carbon steel coupons were 

exposed to 1 M HCl environment with addition of the tested inhibitor, and the tests were 

carried over the temperature range from 303 to 333 K. After the exposure, the tested coupons 

were taken from the suspension, rinsed completely with distilled water, acetone, then dried 

and weighed accurately. The experiments were repeated in triplicate and the average values 

were determined [23]. The corrosion rate (CR, g∙m–2∙h–1), protection efficacy (IE%) and the 

fractional surface coverage (θ) were calculated according to equations (1), (2) and (3) 

[24, 25]: 
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where W0 represents the value of the mass loss in the absence of CPP; and Wi is refers to the 

value of mass loss in the presence of CPP; a is the coupon area and t is the immersion time 

(h); 0
RC  is the corrosion rate (g∙m–2∙h–1) in the absence of CPP, and i

RC  is the corrosion rate 

(g∙m–2∙h–1) in the presence of CPP. 

2.3 DFT investigations 

Quantum computations have been conducted utilizing density functional theory (DFT) with 

the basis set B3LYP/6-31G (d, p), using the Gaussian 03 program. The CPP molecular 

optimized geometry, the frontier molecular orbitals HOMO and LUMO were achieved by 

applying the DFT method. The important principal chemical parameters according to 
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Koopman’s theorem [26] such as the ionization potential (I), electron affinity (A), softness 

(σ), absolute electronegativity (χ), and absolute hardness (η) in addition to the fraction of 

electron transferred (∆N) were calculated.  

2.4 Antimicrobial Efficiency 

The antibacterial efficiency of the synthesized compound (CPP) was assessed for 

Staphylococcus aureus as gram-positive bacteria and Escherichia coli as gram-negative 

bacteria through the conventional approach, namely disc diffusion technique using nutrient 

agar. The incubation for the tested organisms in agar medium was conducted for 24 h at 

37°C. The disks (5.0 mm diameter) were soaked in the studied solutions with the examined 

concentrations (0.1, 0.2, 0.3, 0.4, 0.5, and 1.00 mM) of CPP which was dissolved in 

dimethylsulphoxide as a sterilized solvent and were placed in Petri dishes on a proper 

medium earlier seeded with the examined bacteria and stored for 24 h in an incubator. The 

zone of inhibition around the tested discs was calculated in mm. To determine any inhibition 

activity of dimethylsulphoxide on the examined pathogens, further experiments were 

conducted using dimethylsulfoxide as control. Dimethylsulfoxide revealed no efficacy 

toward the examined bacteria. 

3. Results and Discussion 

3.1 Weight Loss Study 

3.1.1 Effect of Concentration 

The corrosion rate (CR) of mild steel and the inhibition efficiency obtained from the mass 

loss measurements in 1 M HCl medium containing various concentrations of CPP (0.1, 0.2, 

0.3, 0.4, 0.5, and 1.00 mM) at 303 K are exhibited in Figure 2. The weight loss findings 

obviously reveal that the inhibitory efficacy increases and the corrosion rate decreases with 

increasing concentration of the inhibitor studied. When the concentration of CPP changes 

from 0.1 mM to 1 mM, the inhibition efficacy of CPP improves from 47.3% to 92.8%. This 

implies that CPP acts as an inhibitor impeding mild steel corrosion in 1 M HCl 

environment. While the concentration of CPP corrosion inhibitor is low, additional 

molecules are required to effectively cover the mild steel surface. Furthermore, increasing 

the concentration above 0.5 mM did not bring any important differences in the inhibition 

efficiency, showing the realization of an optimum concentration value of the tested 

inhibitor. The result is due to the accumulation of CPP on the mild steel surface that is 

positively charged, therefore reducing direct interaction between the mild steel surface and 

the hydrochloric acid environment [27–31]. 
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Figure 2. Mild steel corrosion characteristics in 1 M HCl medium with various concentration 

of CPP at 303 K. 

3.1.2 Effect of Temperature 

The temperature has a considerable effect on the corrosion rate of mild steel. The effect of 

environment temperature (303–333 K) on the corrosion rate and protection performance is 

illustrated in Figure 3. The corrosion rate decreased considerably upon addition of the 

inhibitor compared to the blank solution. In 1 M HCl, the corrosion is considerably inhibited 

by the addition of an inhibitor. It indicates that an increase in the concentration of the 

examined inhibitor considerably retards the corrosion of mild steel surface in 1 M HCl. The 

reduction in inhibitive efficacy and increase in corrosion rate was noted with a rise in 

temperature from 303 to 333 K, which is believed to be because the adsorption processes 

occur spontaneously and irreversible with rising temperature, and the temperature rise is not 

useful to the adsorption. The effect may further become stronger from weakening of 

electrostatic adsorption on the mild steel surface and the difficulty of inhibitor molecules 

desorption from the mild steel surface as the temperature rises. Moreover, mild steel 

corrosion in HCl solution is normally followed by hydrogen release, and the process of 

adsorption of the tested inhibitor molecules could be affected by the confusion generated by 

an acceleration hydrogen evolution at high temperatures that leads to a reduction in the 

protection efficacy [32–35].  
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Figure 3. The variation of corrosion rate and inhibition efficiency of mild steel in 1 M HCl 

solution at various temperatures (303–333 K). 

3.2 Adsorption Isotherm 

The adsorption isotherm can be used to analyze the interactions between the inhibitor 

molecules and the mild steel surface. Different isotherm models, such as Frumkin, 

Langmuir, Freundlich, and Temkin, were studied in the adsorption mode, and Langmuir 

model was eventually judged to have been the most acceptable. Figure 4 shows the linear 

C/θ and C correlations for the CPP inhibitor [36–39]. 

 
Figure 4. Langmuir adsorption model of CPP molecules in the corrosive environment. 
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As it is seen in Figure 4, R2 (Table 2) which represents the linear regression parameter 

is relatively close to 1, revealing that the Langmuir adsorption model is valid at all the 

temperatures studied (303, 313, 323, and 333 K) in the adsorption of the examined CPP 

molecules on the mild steel surface. The adsorption isotherm could be determined according 

to Equation 4 [40–43]: 

 
ads

1

θ

С
C

K
= +  (4) 

where Kads represents the adsorption equilibrium constant, C refers to the concentration of 

the tested inhibitor, and θ signifies the surface coverage.  

Table 2. Physical parameters of CPP as a corrosion inhibitor of mild steel in HCl solution at various 

temperatures. 

Temp. (K) 303 313 323 333 

Slope 0.94552 1.03593 1.01246 1.29795 

R2 0.99756 0.99774 0.98398 0.9986 

The free energy ( 0
ads

G ) can be calculated from Kads as exhibited in Equation 5. 
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where 55.5 is the water concentration (mol∙L–1), T is the temperature (K), and R is the 

universal gas constant(J∙K–1∙mol–1). 

The values of Kads and 0
ads

G  are provided in Table 3. The negative values of 0
ads

G

shows that the CPP molecule is spontaneously adsorbed on the mild steel surface to create a 

protective film. Moreover, a high Kads value means that the CPP molecules are firmly 

adsorbed on mild steel surface. The presence of electron-negative active sites like nitrogen 

and oxygen in addition to -bonds in the structure of the tested inhibitor molecules will 

provide strong inhibitor protection to mild steel surface [44–47]. 

Table 3. Kads and 
0

adsG  values of CPP molecules adsorbed on mild steel surface at 303–333 K. 

Parameter 
Temperature (K) 

303 313 323 333 

Kads (mol ∙L– 1) 117.49 104.34 93.85 77.94 

0
adsG (kJ ∙mol– 1) –38.3 –34.9 –32.6 –31.7 
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Generally, if the value of 0
ads

G  is about –40 kJ∙mol–1, then the adsorption mechanism 

should be involve both physisorption and chemisorption. A value of 0
ads

G  more negative 

than –40 kJ∙mol–1 may be suggestive of donation of electron pairs from the inhibitor 

molecules to the d-orbital of Fe atoms on the mild steel surface, whereas a value less negative 

than –20 kJ∙mol–1 implies physical adsorption. As discussed earlier, it was suggested that 

both physisorption and chemisorption were reasonable for CPP at 303 to 333 K according 

to the values of 0
ads

G  values obtained in the current investigation as presented in Table 3. 

3.3 Computational studies 

Quantum chemical calculations have become a really important technique for investigating 

the mechanism of inhibition. The optimized molecular structure of CPP molecules is 

demonstrated in Figure 5, and the theoretical parameters are presented in Table 4. It is noted 

that the frontier homo molecular orbital MO in the molecules studied is chiefly distributed 

over the entire inhibitor molecule including the heterocyclic ring and the imine bond  

[48–57]. It has been proved in recent studies that the HOMO energy is usually related to the 

ability of molecules to donate electrons. A HOMO with a high energy value is expected to 

show the ability of a molecule to donate an electron to a suitable acceptor molecule with an 

unoccupied orbital [58–63]. Moreover, the LUMO energy refers to the ability of a molecule 

to receive electron pairs. A lower energy gap of a molecule indicates the best inhibitory 

efficiency because the value of energy required to move an electron from the last occupied 

orbital is smaller. HOMO with high energy and low energy gap values were found in the 

CPP molecules, which shows that CPP has a superior protection performance as shown in 

Table 4. 

 
Figure 5. Frontier MOs (HOMO and LUMO) and optimized structure of the CPP molecule. 
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Table 4. Quantum chemical parameters for CPP molecules. 

Parameter Value  

EHOMO (eV) –10.030 

ELUMO (eV) –3.162 

ΔE (eV) –6.868 

I=–EHOMO (eV) 10.030 

A=–ELUMO (eV) 3.162 

χ=(I+A)/2 (eV) 7.143 

η=(I–A)/2 (eV) 3.034 

σ=1/η (eV– 1) 0.329 

∆N=[χFe–χinh]/[2(ηFe–ηinh)] –0.0238 

Dipole moment  2.195 (D) 

Chemical hardness and softness are important factors that deal with the inhibitor 

molecule’s reactivity and stability. A high value of hardness and low value of softness 

indicate excellent protection performance. Table 4 shows that the energy gap of CPP 

(6.868 eV) indicates that CPP is the best inhibitor for the corrosion of mild steel. The 

parameters ΔE, η, σ, and ΔN for CPP are in good agreement with weight loss findings. The 

energies of HOMO and LUMO were –10.030 eV and –3.162 eV respectively, which agrees 

with the experimental results. The number of electrons transferred was also determined. The 

values of N revealed that the protection efficacy following electron donation is comparable 

with Lukovits’s study. If N<3.6, the inhibitive efficacy increases by increasing the ability 

to donate an electron to the Fe atoms on the mild steel surface. The value of N is not 

specifically the number of leaving electrons from the donor and receiving the acceptor 

molecule. Dipole moment is the polarity strength of a polar covalent bond. Dipole moment 

is defined as the product of charges on the atoms and the distance between the two bonded 

atoms. The entire dipole moment, however, exhibits only the molecule polarity. 

3.4 Atomic charges 

The Mulliken charges are significant for figuring out the adsorption sites of corrosion 

inhibitor molecules. An atom with a high negative charge has the ability to be adsorbed on 

the mild steel surface. From Table 5, the CPP molecules have negative charges, which 

indicates that these atoms have the ability to coordinate with the empty d-orbital of Fe atoms 

on the mild steel surface. 
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Table 5. The Mulliken charges of CPP molecule. 

Atom Charge Atom Charge Atom Charge Atom Charge 

C(1) 0.297371 C(5) –0.152666 N(9) –0.533338 C(13) –0.240084 

C(2) –0.051599 C(6) –0.196630 C(10) 0.461847 C(14) 0.069906 

C(3) –0.143404 O(7) –0.594288 C(11) –0.201151 N(15) –0.560322 

C(4) –0.272388 C(8) 0.138133 C(12) –0.149386 Cl(16) 0.084310 

3.5 The antimicrobial activity 

The anti-microbial measurement data confirm that CPP has anti-microbial features in 

addition to better inhibition efficiency than the parent 2-aminopyridine or 4-chlorophenol. 

The most important inhibition efficacy of CPP molecules is attributed to the presence of an 

imine (C=N) group [64, 65]. It is understood that the imine group has the tendency to 

improve the efficacy of CPP molecules to be highly effective in approaching examined 

bacteria and CPP molecules become bactericidal agents, so killing pathogens better than the 

parent compounds which form the CPP. In CPP molecules, the partial (+ve) charge is given 

partly by the -bond located in the CPP molecules, and there may be delocalization of -

electrons over the entire CPP molecules [64–67]. This could enhance the lipophilicity of the 

CPP molecules and favor their diffusion through the lipid membrane of the examined 

bacteria. The lipophilicity increasingly appears to be responsible for improving the 

efficiency of killing bacteria. It may be assumed that CPP molecules have the ability to 

inactivate different cellular enzymes that play a vital role in different pathways of metabolic 

of the examined pathogens. As observed from Figure 6, CPP showed less inhibition activity 

against Escherichia coli than against Staphylococcus aureus. 

 
Figure 6. Effect of CPP against selected bacteria. 
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Infectious problems acquired in hospitals affect around 1.4 billion individuals globally 

at any given time. Escherichia coli and Staphylococcus aureus are two microorganisms that 

are frequently implicated in these illnesses [64–67]. 

Conclusions 

The experimental findings may be summarized as follows: 

1. 4-Chloro-2-((pyridin-2-ylimino)methyl)phenol (CPP) was found to work as an efficient 

corrosion inhibitor for mild steel surface in 1.0 M HCl.  

2. The value of inhibition efficiency increases with CPP concentration, however, it 

diminishes with an increase in temperature suggesting physisorption, along with 

chemisorption based on the value of free energy (–38 kJ/mol).  

3. Furthermore, the protection of mild steel surface by CPP molecules is usually 

demonstrated by the production of a coordination complex of 3d-orbital of iron atoms on 

the mild steel surface and the heteroatoms of CPP molecules. 

4. The adsorption of CPP inhibitor on a mild steel surface in 1.0 M HCl was determined to 

obey the isothermal model of Langmuir adsorption.  

5. The computational chemical quantum investigation showed that the protection efficacy 

improves with an increase in HOMO energy and a reduction in the LUMO energy and 

energy gap ΔE in addition to dipole moment (µ). The atomic charges describe the 

heteroatoms coupled with the 3d-orbital of Fe atoms and a Fe-complex is formed as a 

layer that protects the surface of mild steel. 

6. CPP was studied for antibacterial activities and its considerable antimicrobial inhibitive 

characteristics against selected types of bacteria were found. 
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